Matrices

Matrix

It is an ordered rectangular arrangement of number or function which are represented as

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- Matrix is enclosed by [] or ().
- It is also represented as $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, where i and j are the row and column number.

Order Of A Matrix

For a matrix with m rows and columns, order is $m \times n$, read as ' m by n '

Types Of Matrices

(1) Row matrix : Matrix with one row

$$
\text { For e.g., } A=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

(2) Column matrix : Matrix with one column

$$
\text { For e.g., } \mathrm{A}=\left[\begin{array}{l}
91 \\
82
\end{array}\right]
$$

3 Square matrix : Matrix with equal number of rows and columns

$$
\text { For e.g., } A=\left[\begin{array}{ll}
2 & 1 \\
5 & 6
\end{array}\right]
$$

4. Rectangular matrix : Matrix with unequal number of rows and columns

$$
\text { For e.g., } A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 6 & 7
\end{array}\right]
$$

(5) Diagonal matrix : Square matrix with non-diagonal elements equal to zero.

$$
\text { For e.g., } A=\left[\begin{array}{cc}
9 & 0 \\
0 & 11
\end{array}\right] \text { or }\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 8
\end{array}\right]
$$

