

Download Toppr - India's best learning app for classes 5th to 12th

360° learning with our adaptive platform

Online Classes

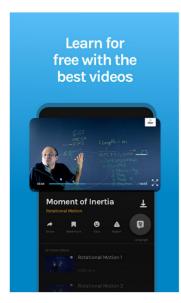
Learn for free with short videos and live classes

Adaptive Practice

Practice smart with questions created for your unique needs

Mock Tests

Be exam ready by solving all India tests and previous years' papers


Live Doubts

Chat with tutors and get your doubts resolved instantly,

Live Classes

Learn concepts and get tips from the best teachers with free Live Classes

Download the app for **FREE** now

GET A 5-DAY FREE TRIAL

NCERT Solutions for Class 9 Subjectwise

- Class 9 Maths
- Class 9 Science
- Class 9 Science Chemistry
- Class 9 Science Biology
- Class 9 Science Physics
- Class 9 Social Science History
- Class 9 Social Science Geography
- Class 9 Social Science Civics
- Class 9 Social Science Economics
- Class 9 English

#463868

Show that of all line segments drawn from a given point, not on it, the perpendicular line segment is the shortest.

Solution

Consider a line $\it l$ on which $\it Y$ and $\it Z$ lies.

Now, a point X away from YZ such that $XY \perp l$ and Z is a point on line l other than Y .

In $\triangle XYZ$,

$$\angle Y = 90^{\circ}$$

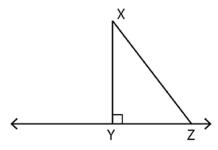
So, in ΔXYZ ,

$$\Rightarrow \angle YXZ + \angle XZY + \angle XYZ = 180^{\circ}$$

Putting $\angle XYZ = 90^\circ$

$$\Rightarrow \angle YXZ + \angle XZY = 90^{\circ}$$

$$\Rightarrow \angle X + \angle Z = 90^{\circ}$$

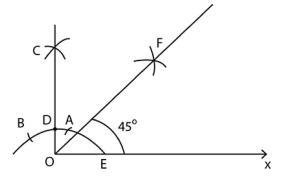

$$\Rightarrow$$
 $\angle Z < 90^{\circ}$

$$\Rightarrow \angle Z < \angle Y$$

$$\Rightarrow XY < XZ$$

(Side opposite to greater angle is greater)

XY is the shortest of all line segments from X to YZ.

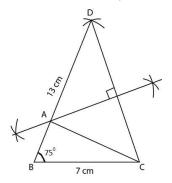


#464071

Construct an angle of 45° from a horizontal line and justify the construction.

Solution

- 1. Draw a ray OX.
- 2. Cut an arc from point ${\cal O}$ of any length.
- 3. Cut two arcs A and B on the previous arc (which are at the angle of 60 deg and 120 deg).
- 4. Cut two arc from points ${\cal A}$ and ${\cal B}$ and their point of intersection is ${\cal C}.$
- 5. Join O-C. $\angle COX$ is 90 deg.
- 6. Bisect $\angle COX$ through cutting two arcs from D and E, their point of intersection is F.
- 7. Join F-O, $\alpha F = O$, $\alpha F = O$, $\alpha F = O$

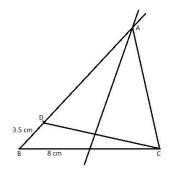

#464082

Construct a triangle ABC in which BC=7cm, $\angle B=75^o$ and AB+AC=13cm

Solution

- 1. Draw $BC=7\ cm$
- 2. Draw angle 75° at B and cut an arc of BD=13~cm
- 3. Join ${\cal CD}$.
- 4. Draw a perpendicular bisector of CD which meets BD at A.
- 5. Join AC.

ABC is the required triangle.

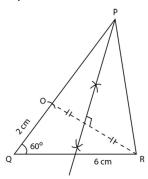

#464083

Construct a triangle ABC in which BC=8cm, $\angle B=45^o$ and AB-AC=3.5cm

Solution

- 1. Draw $BC=8\ m$
- 2. Draw angle 45^{o} at B and cut an arc of $BD=3.5\ cm$
- 3. Join ${\cal CD}$.
- 4. Draw a perpendicular bisector of ${\cal CD}$ which meets ${\cal BD}$ at ${\cal A}.$
- 5. Join AC.

ABC is the required triangle.

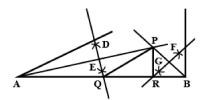

#464084

Construct a triangle PQR in which QR=6cm, $\angle Q=60^o$ and PR-PQ=2cm

Solution

- 1. Draw $QR=6\ cm$
- 2. Draw angle 60° at B and cut an arc of $QO=2\ cm$
- 3. Join OR.
- 4. Draw a perpendicular bisector of OR which meets QO at P.
- 5. Join P-R

PQR is the required triangle.


#464085

Construct a triangle PQR in which $\angle Q=30^{o}$, $\angle R=90^{o}$ and PQ+QR+PR=11cm

Solution

Steps of Construction:

- 1. Draw a line segment $AB=11\ cm\ (=PQ+QR+RP)$
- 2. At A, construct an angle of 30° and at B, an angle of 90° .
- 3. Bisect these angles. Let the bisectors of these angles intersect at a point ${\cal P}.$
- 4. Draw perpendicular bisectors DE of AP to intersect AB at Q and FG of PB to intersect AB at R.
- 5. Join ${\cal PQ}$ and ${\cal PR}$. Then, ${\cal PQR}$ is the required triangle.

