

Download Toppr - India's best learning app for classes 5th to 12th

360° learning with our adaptive platform

Online Classes

Learn for free with short videos and live classes

Adaptive Practice

Practice smart with questions created for your unique needs

Mock Tests

Be exam ready by solving all India tests and previous years' papers

Live Doubts

Chat with tutors and get your doubts resolved instantly,

Live Classes

Learn concepts and get tips from the best teachers with free Live Classes

Download the app for **FREE** now

GET A 5-DAY FREE TRIAL

NCERT Solutions for Class 9 Subjectwise

- Class 9 Maths
- Class 9 Science
- Class 9 Science Chemistry
- Class 9 Science Biology
- Class 9 Science Physics
- Class 9 Social Science History
- Class 9 Social Science Geography
- Class 9 Social Science Civics
- Class 9 Social Science Economics
- Class 9 English

#463644

Topic: Properties of Triangles

In the figure, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

Solution

As Given, $\angle PQR = \angle PRQ$

To prove: $\angle PQS = \angle PRT$

According to the question,

 $\angle PQR + \angle PQS = 180^{\circ}$ | Linear Pair

 \Rightarrow $\angle PQS$ = 180 $^{\circ}$ - $\angle PQR$ --- (i)

Also $\angle PRQ + \angle PRT = 180^{\circ}$ | Linear Pair

⇒ PRT = 180° - ∠PRQ

 \Rightarrow $\angle PRQ = 180^{\circ} - \angle PQR - - - (ii)(\angle PQR = \angle PRQ)$

From (i) and (ii),

 $\angle PQS = \angle PRT = 180^{\circ} - \angle PQR$

∴ ∠PQS = ∠PRT

#463822

Topic: Congruent Triangles

In quadrilateral ACBD, AC = AD and AB bisects $\angle A$. Show that $\triangle ABC \equiv \triangle ABD$. What can you say about BC and BD?

Solution

In $\triangle ABC$ and $\triangle ABD$,

AC = AD (Given)

 $\angle CAB = \angle DAB$ (AB bisects $\angle A$)

AB = AB (Common)

- $\therefore \triangle ABC \cong \triangle ABD$ (By SAS congruence rule)
- ∴ BC = BD (By CPCT)
- \therefore , BC and BD are of equal lengths.

#463824

Topic: Congruent Triangles

ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$ (see Fig.). Prove that

(i) $\triangle ABD \cong \triangle BAC$

(ii) BD = AC

(iii) $\angle ABD = \angle BAC$

Solution

In $\triangle ABD$ and $\triangle BAC$,

AD = BC (Given)

 $\angle DAB = \angle CBA$ (Given)

AB = BA (Common)

 $\therefore \triangle ABD \cong \triangle BAC$ (By SAS congruence rule)

:. BD = AC (By CPCT)

And, $\angle ABD = \angle BAC$ (By CPCT)

#463825

Topic: Congruent Triangles

AD and BC are equal perpendiculars to a line segment AB (see Fig). Show that CD bisects AB

Solution

In $\triangle BOC$ and $\triangle AOD$,

 $\angle BOC = \angle AOD$ (Vertically opposite angles)

∠CBO = ∠DAO (Each 90)

BC = AD(Given)

 $\therefore \triangle BOC \cong \triangle AOD$ (AAS congruence rule)

∴ *BO* = *AO* (By CPCT)

CD bisects AB.

#463826

Topic: Congruent Triangles

I and I are two parallel lines intersected by another pair of parallel lines I and I Show that $\triangle ABC \cong \triangle CDA$

In $\triangle ABC$ and $\triangle CDA$

 $\angle BAC = \angle DCA$ (Alternate interior angles, as $p \parallel q$)

AC = CA (Common)

 $\angle BCA = \angle DAC$ (Alternate interior angles, as / || m)

 $\therefore \triangle ABC \cong \triangle CDA$ (By ASA congruence rule)

#463827

Topic: Congruent Triangles

Line / is the bisector of an angle $\angle A$ and B is any point on / BP and BQ are perpendiculars from B to the arms of $\angle A$. Show that:

(i) $\triangle ABP \cong \triangle AQB$

(ii) BP = BQ or B is equidistant from the arms of $\angle A$

Solution

In △APB and △AQB

 $\angle APB = \angle AQB \text{ (Each } 90^{\circ}\text{)}$

 $\angle PAB = \angle QAB$ (/ is the angle bisector of $\angle A$)

AB = AB (Common)

 $\therefore \triangle APB \cong \triangle AQB$ (By AAS congruence rule)

 $\therefore BP = BQ$ (By CPCT)

It can be said that B is equidistant from the arms of $\angle A$.

#463828

Topic: Congruent Triangles

In Fig, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE

Solution

It is given that $\angle BAD = \angle EAC$

 $\angle BAD + \angle DAC = \angle EAC + \angle DAC$

 $\angle BAC = \angle DAE$

In $\triangle BAC$ and $\triangle DAE$

AB = AD (Given)

 $\angle BAC = \angle DAE$ (Proved above)

AC = AE (Given)

- $\therefore \triangle BAC \cong \triangle DAE$ (By SAS congruence rule)
- ∴ BC = DE (By CPCT)

#463829

Topic: Congruent Triangles

AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that

(i) $\triangle DAP \cong \triangle EBP$

(ii) AD = DE

Solution

It is given that $\angle EPA = \angle DPB$

∠EPA + ∠DPE = ∠DPB + ∠DPE

Therefore,

∠DPA = ∠EPB

In $\triangle EBP$ and $\triangle DAP$,

 $\angle EBP = \angle DAP$ (given)

BP = AP(P is midpoint of AB)

 $\angle EPB = \angle DPA$ [proved above]

By ASA criterion of congruence,

 $\triangle EBP \cong \triangle DAP$

ii)

Since $\triangle EBP \cong \triangle DAP$

AD = BE (using CPCT)

#463831

Topic: Congruent Triangles

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig.).

Show that:

(i) $\triangle AMC \cong \triangle BMD$

(ii) $\angle DBC$ is a right angle.

(iii) $\triangle DBC \cong \triangle ACB$

(iv) $CM = \frac{1}{2}AB$

7/4/2018

(i)

In $\triangle AMC$ and $\triangle BMD$,

∵ M is the mid- point of AB

AM = BM

 $\angle AMC = \angle BMD$ (Vertically opp. angles)

CM = MD (Given)

∴ $\triangle AMC \cong \triangle BMD$ (SAS test of congruence)

(ii)

 $\triangle AMC \cong \triangle BMD$...(1)

:. BD = CA (CPCT)

 $\angle BDM = \angle ACM$ (CPCT)

i.e.

 $\angle BDC = \angle ACD$

∴ BD || CA. (Alternate angle theorem)

∴ ∠CBD + ∠BCA = 180°

(Sum of interior angles between parallel lines is 180°)

$$\Rightarrow$$
 $\angle CBD + 90^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle CBD = 180^{\circ} - 90^{\circ}$

(iii)

In $\triangle DBC$ and $\triangle ACB$, we have

$$BD = CA$$
 ...from (1)

 $\angle DBC = \angle ACB$ (Each 90°)

BC = BC (Common side)

 $\Delta DBC \cong \Delta ACB$ (SAS test of congruence)

(iv)

$$\Rightarrow CM = DM = \frac{1}{2}CD$$

∴ M is the midpoint of CD

$$\therefore CM = \frac{1}{2}CD$$

$$\therefore CM = \frac{1}{2}AB$$

#463832

Topic: Congruent Triangles

In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that :

(i) OB = OC (ii) AO bisects ∠A

(i)

In $\triangle ABC$, we have

AB = AC

 $\therefore \angle ACB = \angle ABC$ (Isosceles triangle theorem)

$$\therefore \frac{1}{2} \angle ACB = \frac{1}{2} \angle ABC \quad ..(1)$$

 $\therefore \angle OCB = \angle OBC \text{ and } \angle ACO = \angle ABO$

[OC and OB are bisectors of $\angle C$ and $\angle B$ respectively]

 \therefore OC = OB (Converse of isosceles triangle theorem) ... (2)

(ii)

In $\triangle ABO$ and $\triangle ACO$

AB = AC (Given)

∠ABO = ∠ACO ...from (1)

...from (2) OB = OC

 \therefore $\triangle ABO \cong \triangle ACO$ (SAS test of congruence)

 $\therefore \angle OAB = \angle OAC$ (CPCT)

So,

AO bisects ∠A

#463833

Topic: Congruent Triangles

In $\triangle ABC$, AD is the perpendicular bisector of BC. Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.

7/4/2018

 \therefore AD is the perpendicular bisector of BC

DB = DC

In $\triangle ABD$ and $\triangle ACD$,

AD = AD (Common side)

and

DB = DC

 $\angle ADB = \angle ADC$

(Both are 90° since $AD\perp BC$)

By SAS criterion of congruence,

 $\triangle ABD \cong \triangle ACD$

So,

AB = AC (by CPCT)

Therefore,

 $\triangle ABC$ is isosceles triangle.

#463834

Topic: Congruent Triangles

ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig.). Show that these altitudes are equal.

Solution

In $\triangle ABE$ and $\triangle ACF$,

AB = AC

 $: \Delta ABC$ is an isosceles triangle

 $\angle BAE = \angle CAF$

Common since both equal to $\angle A$

 $\angle AEB = \angle AFC$ (Both equal to 90°)

By AAS criterion of congruence,

 $\triangle ABE \cong \triangle ACF$

So,

BE = CF (by CPCT)

#463835

Topic: Congruent Triangles

ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig.). Show that

(i) $\triangle ABE \cong \triangle ACF$

(ii) AB = AC, i.e., ABC is an isosceles triangle

In $\triangle ABE$ and $\triangle ACF$,

 $\angle BAE = \angle CAF$ (Common angle)

 $\angle AEB = \angle AFC$

 $: BE \perp AC \text{ and } CF \perp AB$

and

BE = CF (Given that altitudes are equal)

By AAS criterion of congruence,

 $\triangle ABE \cong \triangle ACF$

Hence,

AB = AC (by CPCT)

#463837

Topic: Properties of Triangles

ABC and DBC are two isosceles triangles on the same base BC (see Fig.). Show that $\angle ABD = \angle ACD$.

Solution

Since $\triangle ABC$ is isoceles,

So, AB = AC

 $\Rightarrow \angle ABC = \angle ACB$...(1)

(Angles opposite to equal sides are equal)

Since, $\Delta \textit{BCD}$ is an isosceles triangle,

BD = CD

 $\Rightarrow \angle DBC = \angle DCB$...(2)

(Angles opposite to equal sides are equal)

On adding 1 and 2, we get

 $\angle ABC + \angle DBC = \angle ACB + \angle DCB$

This can be written as

 $\angle ABD = \angle ACD$

#463839

Topic: Properties of Triangles

 $\triangle ABC$ is an isosceles triangle in which AB = AC. Sides BA is produced to D such that AD = AB. Show that $\angle BCD$ is a right angle.

In Δ*ADC*, AD = AC

(:: AB = AC and it is given that AD = AB)

So, AD = AC

 $\angle ACD = \angle ADC$...(1)

(Angles opp. to equal sides are equal)

 ΔABC is an isosceles triangle,

and

AB = AC

So, $\angle ACB = \angle ABC$...(2)

(Angles opp. to equal sides are equal)

On adding (1) and (2),

 $\angle ACB + \angle ACD = \angle ABC + \angle ADC$

 $\Rightarrow \angle BCD = \angle ABC + \angle BDC$

($:: \angle ADC = \angle BDC$ are same)

Adding ∠BCD on both sides,

 $\angle BCD + \angle BCD = \angle ABC + \angle BDC + \angle BCD$

Now,

 $\angle ABC + \angle BDC + \angle BCD = 180^{\circ}$

(Angle sum property of a triangle)

2∠*BCD* = 180 °

∠*BCD* = 90°

∠BCD is a right angle.

Topic: Properties of Triangles

ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

Solution

Since AB = AC,

So, $\triangle ABC$ is isosceles.

 $\angle B = \angle C$...(angles opp. to equal sides are equal)

 $\angle A + \angle B + \angle C = 180^{\circ}$...(angle - sum property of a triangle)

Substituting $\angle B = \angle C$, $\angle A = 90^{\circ}$

90° + 2∠B = 180°

2∠B = 180°-90° = 90°

⇒ ∠B = 45°

So, $\angle C = \angle B = 45^{\circ}$.

#463842

Topic: Properties of Triangles

Show that the angles of an equilateral triangle are 60° each.

Solution

For an equilateral triangle, all sides are equal.

Assuming an equilateral $\triangle ABC$,

Then,

$$AB = AC = BC$$

$$\Rightarrow \angle A = \angle B = \angle C$$

(Angles opp. to equal sides are equal)

For a triangle, by angle sum property,

Substituting

$$\Rightarrow \angle A = \angle B = \angle C$$

$$\therefore \angle A = \angle B = \angle C = 60^{\circ}$$

So, each angle of an equilateral triangle is 60°.

#463854

Topic: Congruent Triangles

ABC and Dec are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. If AD is extended to intersect BC at P, show that

(i) $\triangle ABD \cong \triangle ACD$

(ii) $\triangle ABP \cong \triangle ACP$

(iii) AP bisects $\angle A$ as well as $\triangle D$

(iv) AP is the perpendicular bisector of BC

(i) In $\triangle ABD$ and $\triangle ACD$,

....(since $\triangle ABC$ is isosceles) AB = AC

AD = AD....(common side)

BD = DC....(since \(\triangle BDC\) is isosceles)

 $\triangle ABD \cong \triangle ACD$ SSS test of congruence,

 $\therefore \angle BAD = \angle CAD \text{ i.e. } \angle BAP = \angle PAC$ c.a.c.t.

(ii) In $\triangle ABP$ and $\triangle ACP$,

AB = AC ...(since $\triangle ABC$ is isosceles)

AP = AP ...(common side)

 $\angle BAP = \angle PAC$ from (i)

 $\triangle ABP \cong \triangle ACP$ SAS test of congruence

 $\therefore BP = PC$...c.s.c.t.

 $\angle APB = \angle APC$ c.a.c.t.

(iii) Since $\triangle ABD \cong \triangle ACD$

 $\angle BAD = \angle CAD$ from (i)

So, AD bisects $\angle A$

i.e. AP bisects∠A

In $\triangle BDP$ and $\triangle CDP$,

DP = DP ...common side

BP = PC ...from (ii)

BD = CD ...(since $\triangle BDC$ is isosceles)

 $\triangle BDP \cong \triangle CDP$ SSS test of congruence

∴ ∠BDP = ∠CDPc.a.c.t.

∴ DP bisects∠D

So, *AP* bisects ∠*D*

From (iii) and (iv),

AP bisects $\angle A$ as well as $\angle D$.

(iv) We know that

 $\angle APB + \angle APC = 180^{\circ}$ (angles in linear pair)

Also, $\angle APB = \angle APC$...from (ii)

$$\therefore \angle APB = \angle APC = \frac{180^{\circ}}{2} = 90^{\circ}$$

BP = PC and $\angle APB = \angle APC = 90^{\circ}$

Hence, AP is perpendicular bisector of BC.

#463855

Topic: Congruent Triangles

AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC (ii) AD bisects ∠A

In ∆*ABC*,

 ${\it AD}$ is the altitude drawn from vertex ${\it A}$ to side ${\it BC}$

∴ ∠D = 90°

and AB = AC (Given)

In $\triangle ADB$ and $\triangle ADC$,

Hypotenuse AB =Hypotenuse AC(Given)

Side AD = Side AD (Common Side)

 $\angle ADC = \angle ADB$

 $\triangle ADB \cong \triangle ADC$

BD = DC (CPCT)

 \therefore D is the midpoint of BC,

i.e. AD bisects BC.

 $\angle BAD = \angle DAC$ (CPCT)

AD is bisector of $\angle A$.

#463856

Topic: Congruent Triangles

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of $\triangle PQR$ (see Fig). Show that:

(i) $\triangle ABM \cong \triangle PQN$

(ii) $\triangle ABC \cong \triangle PQR$

In $\triangle ABC$ and $\triangle PQR$

Given:

AB = PQ

AM = PN

BC = QR

$$\therefore \frac{1}{2}BC = \frac{1}{2}QR$$

In $\triangle ABM$ and $\triangle PQN$,

Given:

AB = PQ

BM = QN ... from (1)

AM = PN

 $\therefore \triangle ABM \cong \triangle PQN$ (By SSS test of congruence)

$$\therefore \angle B = \angle Q \text{ (CPCT)} \quad ...(2)$$

In $\triangle ABC$ and $\triangle PQR$,

AB = PQ (Given)

BC = QR (Given)

 $\angle B = \angle Q$... from (2)

 $\therefore \triangle ABC \cong \triangle PQR$ (By SAS test of congruence)

#463858

Topic: Congruent Triangles

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

In $\triangle BCF$ and $\triangle CBE$,

∠BFC = ∠CEB (Each 90°)

Hyp. BC = Hyp. BC (Common Side)

Side FC = Side EB (Given)

 \div By R.H.S. criterion of congruence, we have

 $\triangle BCF \cong \triangle CBE$

∴ ∠FBC = ∠ECB (CPCT)

In ∆*ABC*,

 $\angle ABC = \angle ACB$

 $[\because \angle FBC = \angle ECB]$

- $\therefore AB = AC$ (Converse of isosceles triangle theorem)
- \therefore $\triangle ABC$ is an isosceles triangle.

#463859

Topic: Congruent Triangles

ABC is an isosceles triangle with AB = AC. Draw $AP \perp BC$ to show that $\angle B = \angle C$

Solution

In $\triangle ABP$ and $\triangle ACP$,

 $\angle APB = \angle APC$ (Both equal to 90°)

AB = AC

 $: \Delta ABC$ is an isosceles triangle.

AP = AP (Common Side)

By R.H.S. criterion of congruence,

 $\triangle ABP \cong \triangle ACP$

 $\Rightarrow \angle B = \angle C \text{ (CPCT)}$

7/4/2018

In $\triangle ABP$ and $\triangle ACP$,

 $\angle APB = \angle APC$ (Both equal to 90°)

AB = AC

 $\because \triangle ABC$ is an isosceles triangle.

AP = AP (Common Side)

By R.H.S. criterion of congruence,

 $\triangle ABP \cong \triangle ACP$

 $\Rightarrow \angle B = \angle C$ (CPCT)

#463861

Topic: Properties of Triangles

Show that in a right angled triangle, the hypotenuse is the longest side.

Solution

Consider ΔPQR which is right angled at Q.

By angle sum property of a triangle,

$$\Rightarrow$$
 90° + $\angle R$ + $\angle P$ = 180°

$$\Rightarrow \angle R + \angle P = 90^{\circ}$$

 $\Rightarrow \angle R$ and $\angle P$ are acute angles

$$\Rightarrow$$
 $\angle R < 90^{\circ}$ and $\angle P < 90^{\circ}$

$$\Rightarrow \angle R < \angle Q \text{ and } \angle P < \angle Q$$

 \Rightarrow PR > PQ and PR > QR

(Side opposite to greater angle is greater)

So, the hypotenuse is the longest side in a triangle.

#463863

Topic: Properties of Triangles

In the figure, sides AB and AC of $\triangle ABC$ are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that AC > AB.

 $\angle PBC < \angle QCB$ (Given)

Multiply the equation by -1.

⇒ -∠PBC> -∠QCB

Adding $_{180}\,^{\circ}$ on both sides, we get

Angles on a straight line add to 1800

Sum of angles $\angle PBC$ and $\angle ABC$ is 180°.

Sum of angles $\angle QCB$ and $\angle ACB$ is 180°.

So,

⇒ ∠ABC > ∠ACB

 $\Rightarrow AC > AB$

(Side opposite to greater angle is greater)

#463864

Topic: Properties of Triangles

In fig, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

Solution

It is given that

 $\angle B < \angle A$ and $\angle C < \angle D$

We know that side opposite to larger angle is larger

OD < *OC* (i)

AO < BO (ii)

Adding eq(i) and eqn (ii), we get

AO + OD < BO + OC

 $\Rightarrow AD < BC$

#463865

Topic: Properties of Triangles

AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD. Show that $\angle A > \angle C$ and $\angle B > \angle D$.

In ∆*ABC*,

BC > AB ...(AB is the smallest side, given)

 $\angle BAC > \angle BCA$...(i)

Similarly, in $\triangle ACD$,

CD > AD(CD is the greatest side, given)

 \therefore $\angle CAD > \angle ACD$...(ii)

Adding (i) and (ii), we have

 $\angle BAC + \angle CAD > \angle BCA + \angle ACD$

 $\Rightarrow \angle A > \angle C$

Now, in ∆*ABD*,

...Gievn AD > AB

∴ ∠*ABD* > ∠*ADB* ...(iii)

Similarly, in $\triangle BCD$,

CD > BC

...(iv) ∠DBC > ∠BDC

Adding (iii) and (iv), we have

∠ABC > ∠ADC

 $\Rightarrow \angle B > \angle D$

#463867

Topic: Properties of Triangles

In fig, PR > PQ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$.

In ∆*PQR*,

PR > PQ (Given)

 $\Rightarrow \angle PQR > \angle PRQ$...(1)

(Angle opposite to side of greater length is greater

PS is the bisector of $\angle P$, so $\angle x = \angle y$

Adding \angle_X in (1)

 $\Rightarrow \angle PQR + \angle x > \angle PRQ + \angle x$

 $\Rightarrow \angle PQR + \angle x > \angle PRQ + \angle y \dots (2)$

In ∆*PQS*,

 $\angle PQS + \angle x + \angle PSQ = 180^{\circ}$

(Angle sum property of triangle)

$$\therefore \angle PQS + \angle x = 180^{\circ} - \angle PSQ$$
 (3)

In $\triangle PSR$,

∠PRS + ∠y + ∠PSR = 180°

(Angle sum property of triangle)

$$\angle PRS + \angle y = 180^{\circ} - \angle PSR$$

Using equation (1), (2), (3) we get

$$180^{\circ} - \angle PSQ > 180^{\circ} - \angle PSR \dots (4)$$

$$\Rightarrow - \angle PSQ > - \angle PSR$$

$$\Rightarrow \angle PSQ \le \angle PSR$$

So,

∠PSR > ∠PSQ

#463869

Topic: Theorems of Triangles

ABC is a triangle. Locate a point in the interior of $\triangle ABC$ which is equidistant from all the vertices of $\triangle ABC$.

Let OD and OE be the perpendicular bisectors of sides BC and AB of $\triangle \mathit{ABC}$ respectively.

:. By perpendicular bisector theorem,

O is equidistant from the end points of seg BC i.e. points B and C.

Similarly, point ${\it O}$ is equidistant from end points of seg ${\it AC}$ i.e points ${\it C}$ and ${\it A}$.

Hence, the point of intersection O of the perpendicular bisectors of sides AB and BC is equidistant from vertices A, B, C of $\triangle ABC$.

#463870

Topic: Theorems of Triangles

In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Solution

Let BQ and CP be the bisectors of $\angle ABC$ and $\angle ACB$ respectively, intersecting in the interior of $\triangle ABC$ at R.

Let BQ intersect side AC in Q and CP intersect side AB in P.

.. By angle bisector theorem,

Since, R lies on BQ, point R is equidistant from AB and BC.

Similarly, R lies on CP and is equidistant from AC and BC.

So, O is equidistant from BC and AC.

Therefore, point O is equidistant from all three sides AB, BC and CA of $\triangle ABC$.

#463872

Topic: Theorems of Triangles

In a huge park, people are concentrated at three points (see Fig):

A: where there are different slides and swings

B: near which a man-made lake is situated,

C: which is near to a large parking and exit

Where should an icecream parlour be set up so that maximum number of persons can approach it?

Solution

To set up a parlor, we should chose a place that is equidistant from A, B and C.

This point can be located by obtaining point of intersection of perpendicular bisector.

So, D is the required point which is equidistant from A, B and C.

#463884

Topic: Congruent Triangles

ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD. Show that

(i) $\triangle APB \cong \triangle CQD$

(ii) AP = CQ

Solution

(i) In $\triangle APB$ and $\triangle CQD$,

 $\angle APB = \angle CQD = 90^{\circ}$ given

 $\angle ABP = \angle QDC$ (alternate interior angles of parallelogram ABCD and DC || AB)

AB = CDOpposite sides of a || gm

....SAA test of congruence $\therefore \triangle APB \cong \triangle CQD$

(ii) $\triangle APB \cong \triangle CQD$...from (i)

 $\therefore AP = CQ$ c.s.c.t

#463885

Topic: Congruent Triangles

In $\triangle ABC$ and $\triangle DEF$, AB = DE, $AB \parallel DE$, BC = EF and $BC \parallel EF$. Vertices A, B and C are joined to vertices D, E and F respectively. Show that

- (i) Quadrilateral ABED is a parallelogram
- (ii) Quadrilateral BEFC is a parallelogram
- (ii) AD || CE and AD = CF
- (iv) Quadrilateral $\mathcal{A}\mathcal{CFD}$ is a parallelogram
- (v) AC = DF
- (vi) $\triangle ABC \cong \triangle DEF$

Solution

(i) Consider the quadrilateral ABED

We have, AB = DE and $AB \parallel DE$

One pair of opposite sides are equal and parallel. Therefore

ABED is a parallelogram.

(ii) In quadrilateral $\,\it BEFC$, we have

BC = EF and $BC \parallel EF$. One pair of opposite sides are equal and parallel.therefore, BEFC is a parallelogram.

(iii) AD = BE and $AD \parallel BE \mid As ABED$ is a $\|gm\| \dots (1)$

and CF = BE and $CF \parallel BE \parallel$ As BEFC is a $\parallel gm \parallel ...$ (2)

From (1) and (2), it can be inferred

AD = CF and AD || CF

(iv) AD = CF and $AD \parallel CF$

 \Rightarrow One pair of opposite sides are equal and parallel.

- ⇒ ACFD is a parallelogram.
- (v) Since ACFD is parallelogram.

AC = DF | As Opposite sides of all gm ACFD

(vi) In triangles ABC and DEF, we have

AB = DE | (opposite sides of ABED

BC = EF | (Opposite sides of BEFC

and CA = FD | Opposite. sides of ACFD

Using SSS criterion of congruence,

 $\triangle ABC \cong \triangle DEF$

#463886

Topic: Congruent Triangles

 $\mathcal{A}BCD$ is a trapezium in which $\mathcal{A}B \parallel CD$ and $\mathcal{A}D = BC$. Show that

(i) $\angle A = \angle B$

(ii) $\angle C = \angle D$

(iii) $\triangle ABC \cong \triangle BAD$

(iv) diagonal AC = diagonal BD

Solution

Given:

ABCD is a trapezium in which $AB \parallel CD$ and AD = BC

To prove:

(i) $\angle A = \angle B$

(ii) $\angle C = \angle D$

(iii) $\triangle ABC \cong \triangle BAD$

(iv) Diagonal AC = diagonal BD.

Proof:

AD || CE

AE is transversal and AE cuts them at A and E respectively.

Therefore, $\angle A + \angle E = 180^{\circ}$...(1)

Since $AB \parallel CD$ and $AD \parallel CE$.

 $\ensuremath{\textit{AECD}}$ is a parallelogram .

Therefore,

 \Rightarrow AD = CE

 \Rightarrow BC = CE (Since AD = BC (given))

Thus, in $\triangle BCE$

BC = CE (By Angle sum property)

∠CEB = ∠CBE

180° - ∠*B* = ∠*E*

180° - ∠*E* = ∠*B*

 $\therefore \angle A = \angle B$

(ii) $\angle BAD = \angle ABD$

180° - ∠BAD = 180° - ∠ABD

 $\angle ADB = \angle BCD$

 $\angle D = \angle C$ i.e. $\angle C = \angle D$

(iii) In $\triangle ABC$ and $\triangle BAD$, we have

BC = AD (Given)

AB = BA (Common)

 $\angle A = \angle B$ proved

Using SAS criterion of congruence

 $\triangle ABC \cong \triangle BAD$

(iv) Therefore, AC = BD (CPCT)

#463951

Topic: Congruent Triangles

In fig, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are square on the sides BC, CA and AB respectively. Line segment $AX \perp DE$ meets BC at Y. Show that:

(i) $\triangle MBC \cong \triangle ABD$

(ii) ar(BYXD) = 2ar(MBC)

(iii) ar(BYXD) = ar(ABMN)

(iv) $\triangle FCB \cong \triangle ACE$

(v) ar(CYXE) = 2ar(FCB)

(vi) ar(CYXE) = ar(ACFG)

(vii) ar(BCED) = ar(ABMN) + ar(ACFG)

Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler

proof of this theorem in Class X.

Solution

(i)

In ΔS MBC and ABD, we have

BC = BD

[Sides of the square BCED]

MB = AB

[Sides of the square ABMN]

 $\angle MBC = \angle ABD$

[Since Each = $90^{\circ} + \angle ABC$]

Therefore by SAS criterion of congruence, we have

 $\triangle MBC \cong \delta ABD$

Therefore
$$ar(ABD) = \frac{1}{2}ar(BYXD)$$

But $\triangle MBC \cong \triangle ABD$ [Proved in part (i)]

$$\Rightarrow$$
 ar(MBC) = ar(ABD)

Therefore
$$ar(MBC) = ar(ABD) = \frac{1}{2}ar(BYXD)$$

$$\Rightarrow ar(BYXD) = 2ar(MBC)$$
.

Square ABMN and ΔMBC have the same base MB and are between same parallels MB and NAC.

Therefore
$$ar(MBC) = \frac{1}{2}ar(ABMN)$$

$$\Rightarrow$$
 ar(ABMN) = 2ar(MBC)

(iv)

In Δs ACE and BCF, we have

CE = BC[Sides of the square BCED]

AC = CF[Sides of the square ACFG]

and $\angle ACE = \angle BCF$ [Since Each = 90° + $\angle BCA$]

Therefore by SAS criterion of congruence,

 $\triangle ACE \cong \triangle BCF$

(v)

 $\triangle ACE$ and square CYXE have the same base CE and are between same parallels CE and AYX.

Therefore
$$ar(ACE) = \frac{1}{2}ar(CYXE)$$

$$\Rightarrow ar(FCB) = \frac{1}{2}ar(CYXE)$$
 [Since $\triangle ACE \cong \triangle BCF$, part (iv)]

$$\Rightarrow ar(CYXE) = 2ar(FCB)$$
.

(vi)

Square ACFG and $\Rightarrow BCF$ have the same base CF and are between same parallels CF and BAG.

Therefore
$$ar(BCF) = \frac{1}{2}ar(ACFG)$$

$$\Rightarrow \frac{1}{2} ar(CYXE) = \frac{1}{2} ar(ACFG) [Using part (v)]$$

$$\Rightarrow$$
 ar(CYXE) = ar(ACFG)

(vii)

From part (iii) and (vi) we have

$$ar(BYXD) = ar(ABMN)$$

and

$$ar(CYXE) = ar(ACFG)$$

7/4/2018 $https://community.toppr.com/content/questions/print/?show_answer=1\&show_topic=1\&show_solution=1\&page=1\&qid=464041\%2C+4640\dots$

On adding we get

ar(BYXD) + ar(CYXE) = ar(ABMN) + ar(ACFG)ar(BCED) = ar(ABMN) + ar(ACFG)

#464041

Topic: Properties of Triangles

A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk to each other. Find the length of the string of each phone.

Let Ankur be represented as A, Syed as S and David as D.

The boys are sitting at equal distance.

Hence, $\triangle \textit{ASD}$ is an equilateral triangle.

Let the radius of the circular park be $_{\it r}$ meters.

$$\therefore$$
 OS = r = 20m.

Let the length of each side of $\triangle ASD$ be $_X$ meters.

Draw $AB \perp SD$

$$\therefore SB = BD = \frac{1}{2}SD = \frac{x}{2} \text{ m}$$

In $\triangle ABS$, $\angle B = 90^{\circ}$

By Pythagoras theorem,

$$AS^2 = AB^2 + BS^2$$

$$\therefore AB^2 = AS^2 - BS^2$$

$$= x^2 - \left(\frac{x}{2}\right)^2 = \frac{3x^2}{4}$$

$$\therefore AB = \frac{\sqrt{3}x}{2} \text{ m}$$

Now, AB = AO + OB

$$OB = AB - AO$$

$$OB = \left(\frac{\sqrt{3}x}{2} - 20\right) \text{ m}$$

In △*OBS*,

$$OS^2 = OB^2 + SB^2$$

$$20^2 = \left(\frac{\sqrt{3}x}{2} - 20\right)^2 + \left(\frac{x}{2}\right)^2$$

$$400 = \frac{3}{4}x^2 + 400 - 2(20)(\frac{\sqrt{3}x}{2}) + \frac{x^2}{4}$$

$$0 = x^2 - 20\sqrt{3}x$$

$$\therefore x = 20\sqrt{3}m$$

Length of string of each phone is $20\sqrt{3}$ m.

#464081

Topic: Properties of Triangles

Construct an equilateral triangle, given its side = 3 and justify the construction.

Let equilateral triangle be $\ensuremath{\mathit{ABC}}$

Draw AB = 5CM

Taking A and B as centers, radius = AB = 5cm

draw two areas intersecting each other at $\ensuremath{\emph{A}}$

join AB and AC

for justification just measure the length of each sides

