Download Toppr - India's best learning app for classes 5th to 12th
360° learning with our adaptive platform

Learn for free with short videos and live classes

Adaptive Practice
Practice smart with questions

Mock Tests
Be exam ready by solving all India tests and previous years' papers

Chat with tutors and get your doubts resolved instantly,
24×7
ol
Live Classes
Learn concepts and get tips
from the best teachers with
free Live Classes

Download the app for FREE now

GET A 5-DAY FREE TRIAL

NCERT Solutions for Class 9 Subjectwise

- Class 9 Maths
- Class 9 Science
- Class 9 Science - Chemistry
- Class 9 Science - Biology
- Class 9 Science - Physics
- Class 9 Social Science - History
- Class 9 Social Science - Geography
- Class 9 Social Science - Civics
- Class 9 Social Science - Economics
- Class 9 English

Topic: Properties of Triangles

In the figure, $\angle P Q R=\angle P R Q$, then prove that $\angle P Q S=\angle P R T$.

Solution

As Given, $\angle P Q R=\angle P R Q$
To prove: $\angle P Q S=\angle P R T$
According to the question,
$\angle P Q R+\angle P Q S=180^{\circ} \quad \mid \quad$ Linear Pair
$\Rightarrow \angle P Q S=180^{\circ}-\angle P Q R^{---}$(i)
Also $\angle P R Q+\angle P R T=180^{\circ}$ | Linear Pair
$\Rightarrow P R T=180^{\circ}-\angle P R Q$
$\Rightarrow \angle P R Q=180^{\circ}-\angle P Q R---(i)(\angle P Q R=\angle P R Q)$
From (i) and (ii),
$\angle P Q S=\angle P R T=180^{\circ}-\angle P Q R$
$\therefore \angle P Q S=\angle P R T$
\#463822
Topic: Congruent Triangles

In quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$. Show that $\triangle A B C \equiv \triangle A B D$. What can you say about $B C$ and $B D$?

Solution

In $\triangle A B C$ and $\triangle A B D$,
$A C=A D$ (Given)
$\angle C A B=\angle D A B(A B$ bisects $\angle A)$
$A B=A B$ (Common)
$\therefore \triangle A B C \cong \triangle A B D$ (By SAS congruence rule)
$\therefore B C=B D(B y C P C T)$
$\therefore, B C$ and $B D$ are of equal lengths.
\#463824
Topic: Congruent Triangles

$A B C D$ is a quadrilateral in which $A D=B C$ and $\angle D A B=\angle C B A$ (see Fig.). Prove that
(i) $\triangle A B D \cong \triangle B A C$
(ii) $B D=A C$
(iii) $\angle A B D=\angle B A C$

Solution
In $\triangle A B D$ and $\triangle B A C$,
$A D=B C$ (Given)
$\angle D A B=\angle C B A$ (Given)
$A B=B A$ (Common)
$\therefore \triangle A B D \cong \triangle B A C$ (By SAS congruence rule)
$\therefore B D=A C$ (By CPCT)
And, $\angle A B D=\angle B A C($ By CPCT $)$
\#463825
Topic: Congruent Triangles

$A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (see Fig). Show that $C D$ bisects $A B$

Solution
In $\triangle B O C$ and $\triangle A O D$,
$\angle B O C=\angle A O D$ (Vertically opposite angles)
$\angle C B O=\angle D A O$ (Each 90)
$B C=A D$ (Given)
$\therefore \triangle B O C \cong \triangle A O D$ (AAS congruence rule)
$\therefore B O=A O(B y$ CPCT $)$
$C D$ bisects $A B$.
\#463826
Topic: Congruent Triangles

/ and m are two parallel lines intersected by another pair of parallel lines p and q. Show that $\triangle A B C \cong \triangle C D A$

Solution

In $\triangle A B C$ and $\triangle C D A$
$\angle B A C=\angle D C A$ (Alternate interior angles, as $p \| q$)
$A C=C A$ (Common)
$\angle B C A=\angle D A C$ (Alternate interior angles, as $/ \| m$)
$\therefore \triangle A B C \cong \triangle C D A$ (By ASA congruence rule)
\#463827
Topic: Congruent Triangles

Line $/$ is the bisector of an angle $\angle A$ and B is any point on $I \cdot B P$ and $B Q$ are perpendiculars from B to the arms of $\angle A$. Show that:
(i) $\triangle A B P \cong \triangle A Q B$
(ii) $B P=B Q$ or B is equidistant from the arms of $\angle A$

Solution
In $\triangle A P B$ and $\triangle A Q B$
$\angle A P B=\angle A Q B\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle P A B=\angle Q A B$ (/ is the angle bisector of $\angle A$)
$A B=A B$ (Common)
$\therefore \triangle A P B \cong \triangle A Q B$ (By AAS congruence rule)
$\therefore B P=B Q(B y$ CPCT $)$
It can be said that B is equidistant from the arms of $\angle A$.
\#463828
Topic: Congruent Triangles

In Fig, $A C=A E, A B=A D$ and $\angle B A D=\angle E A C$. Show that $B C=D E$

Solution

It is given that $\angle B A D=\angle E A C$
$\angle B A D+\angle D A C=\angle E A C+\angle D A C$
$\angle B A C=\angle D A E$
In $\triangle B A C$ and $\triangle D A E$
$A B=A D$ (Given)
$\angle B A C=\angle D A E$ (Proved above)
$A C=A E$ (Given)
$\therefore \triangle B A C \cong \triangle D A E$ (By SAS congruence rule)
$\therefore B C=D E(\mathrm{By} \mathrm{CPCT})$

\#463829

Topic: Congruent Triangles

$A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that $\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$. Show that
(i) $\triangle D A P \cong \triangle E B P$
(ii) $A D=D E$

Solution

i)

It is given that $\angle E P A=\angle D P B$
Now,
$\angle E P A+\angle D P E=\angle D P B+\angle D P E$
Therefore,
$\angle D P A=\angle E P B$

In $\triangle E B P$ and $\triangle D A P$
$\angle E B P=\angle D A P$ (given)
$B P=A P(P$ is midpoint of $A B)$
$\angle E P B=\angle D P A$ [proved above]
By ASA criterion of congruence,
$\triangle E B P \cong \triangle D A P$
ii)

Since $\triangle E B P \cong \triangle D A P$
$A D=B E$ (using CPCT)
\#463831
Topic: Congruent Triangles

Show that:
(i) $\triangle A M C \cong \triangle B M D$
(ii) $\angle D B C$ is a right angle.
(iii) $\triangle D B C \cong \triangle A C B$
(iv) $C M=\frac{1}{2} A B$

Solution

(i)

In $\triangle A M C$ and $\triangle B M D$,
$\because M$ is the mid- point of $A B$
$A M=B M$
$\angle A M C=\angle B M D$ (Vertically opp. angles)
$C M=M D$ (Given)
$\therefore \triangle A M C \cong \triangle B M D$ (SAS test of congruence)
(ii)
$\triangle A M C \cong \triangle B M D \quad . . .{ }^{(1)}$
$\therefore B D=C A(C P C T)$
$\angle B D M=\angle A C M$ (СРСТ)
i.e.
$\angle B D C=\angle A C D$
$\therefore B D \| C A$. (Alternate angle theorem)
$\therefore \angle C B D+\angle B C A=180^{\circ}$
(Sum of interior angles between parallel lines is 180°)
$\Rightarrow \angle C B D+90^{\circ}=180^{\circ}$
$\Rightarrow \angle C B D=180^{\circ}-90^{\circ}$
$\therefore \angle D B C=90^{\circ}$
(iii)

In $\triangle D B C$ and $\triangle A C B$, we have
$B D=C A \quad$..from (1)
$\angle D B C=\angle A C B$ (Each 90 ${ }^{\circ}$)
$B C=B C$ (Common side)
$\triangle D B C \cong \triangle A C B$ (SAS test of congruence)
(iv)
$\therefore C D=A B$
$\Rightarrow C M=D M=\frac{1}{2} C D$
$\because M$ is the midpoint of $C D$
$\therefore C M=\frac{1}{2} C D$
$\therefore C M=\frac{1}{2} A B$
\#463832
Topic: Congruent Triangles
In an isosceles triangle $A B C$, with $A B=A C$, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that :
(i) $O B=O C$ (ii) $A O$ bisects $\angle A$

Solution
(i)

In $\triangle A B C$, we have
$A B=A C$
$\therefore \angle A C B=\angle A B C$ (lsosceles triangle theorem)
$\therefore \frac{1}{2} \angle A C B=\frac{1}{2} \angle A B C \quad . .(1)$
$\therefore \angle O C B=\angle O B C$ and $\angle A C O=\angle A B O$
[OC and OB are bisectors of $\angle C$ and $\angle B$ respectively]
$\therefore O C=O B$ (Converse of isosceles triangle theorem) ... (2)
(i)

In $\triangle A B O$ and $\triangle A C O$
$A B=A C$ (Given)
$\angle A B O=\angle A C O \quad$...from (1)
$O B=O C \quad$..from (2)
$\therefore \triangle A B O \cong \triangle A C O$ (SAS test of congruence)
$\therefore \angle O A B=\angle O A C(C P C T)$
So,
$A O$ bisects $\angle A$

\#463833

Topic: Congruent Triangles

In $\triangle A B C, A D$ is the perpendicular bisector of $B C$. Show that $\triangle A B C$ is an isosceles triangle in which $A B=A C$.

Solution

$\because A D$ is the perpendicular bisector of $B C$
$D B=D C$
In $\triangle A B D$ and $\triangle A C D$,
$A D=A D$ (Common side)
and
$D B=D C$
$\angle A D B=\angle A D C$
(Both are 90° since $A D \perp B C$)
By SAS criterion of congruence,
$\triangle A B D \cong \triangle A C D$
So,
$A B=A C$ (by CPCT)
Therefore,
$\triangle A B C$ is isosceles triangle.
\#463834
Topic: Congruent Triangles

$A B C$ is an isosceles triangle in which altitudes $B E$ and $C F$ are drawn to equal sides $A C$ and $A B$ respectively (see Fig.). Show that these altitudes are equal.

Solution
In $\triangle A B E$ and $\triangle A C F$
$A B=A C$
$\because \triangle A B C$ is an isosceles triangle
$\angle B A E=\angle C A F$
Common since both equal to $\angle A$
$\angle A E B=\angle A F C$ (Both equal to 90°)
By AAS criterion of congruence,
$\triangle A B E \cong \triangle A C F$
So,
$B E=C F($ by CPCT $)$
\#463835
Topic: Congruent Triangles

$A B C$ is a triangle in which altitudes $B E$ and $C F$ to sides $A C$ and $A B$ are equal (see Fig.). Show that
(i) $\triangle A B E \cong \triangle A C F$
(ii) $A B=A C$, i.e., $A B C$ is an isosceles triangle

Solution

In $\triangle A B E$ and $\triangle A C F$,
$\angle B A E=\angle C A F$ (Common angle)
$\angle A E B=\angle A F C$
$\because B E \perp A C$ and $C F \perp A B$
and
$B E=C F$ (Given that altitudes are equal)

By AAS criterion of congruence,
$\triangle A B E \cong \triangle A C F$
Hence,
$A B=A C$ (by CPCT)
\#463837
Topic: Properties of Triangles

$A B C$ and $D B C$ are two isosceles triangles on the same base $B C$ (see Fig.). Show that $\angle A B D=\angle A C D$.

Solution
Since $\triangle A B C$ is isoceles,
So, $A B=A C$
$\Rightarrow \angle A B C=\angle A C B \quad \ldots(1)$
(Angles opposite to equal sides are equal)
Since, $\triangle B C D$ is an isosceles triangle,
$B D=C D$
$\Rightarrow \angle D B C=\angle D C B \quad \ldots$ (2)
(Angles opposite to equal sides are equal)
On adding 1 and 2 , we get
$\angle A B C+\angle D B C=\angle A C B+\angle D C B$
This can be written as
$\angle A B D=\angle A C D$
\#463839
Topic: Properties of Triangles

$\triangle A B C$ is an isosceles triangle in which $A B=A C$. Sides $B A$ is produced to D such that $A D=A B$. Show that $\angle B C D$ is a right angle.

Solution

In $\triangle A D C$,
$A D=A C$
$(\because A B=A C$ and it is given that $A D=A B)$
So, $A D=A C$
$\angle A C D=\angle A D C \quad . .(1)$
(Angles opp. to equal sides are equal)
$\triangle A B C$ is an isosceles triangle,
and
$A B=A C$
So, $\angle A C B=\angle A B C \quad \ldots$ (2)
(Angles opp. to equal sides are equal)

On adding (1) and (2),
$\angle A C B+\angle A C D=\angle A B C+\angle A D C$
$\Rightarrow \angle B C D=\angle A B C+\angle B D C$
$(\because \angle A D C=\angle B D C$ are same)

Adding $\angle B C D$ on both sides,
$\angle B C D+\angle B C D=\angle A B C+\angle B D C+\angle B C D$
Now,
$\angle A B C+\angle B D C+\angle B C D=180^{\circ}$
(Angle sum property of a triangle)
$2 \angle B C D=180^{\circ}$
$\angle B C D=90^{\circ}$
$\angle B C D$ is a right angle.

\#463841

Topic: Properties of Triangles
$A B C$ is a right angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Solution

Since $A B=A C$,
So, $\triangle A B C$ is isosceles.
$\angle B=\angle C \quad$...(angles opp. to equal sides are equal)
$\angle A+\angle B+\angle C=180^{\circ} \quad$...(angle - sum property of a triangle)
Substituting $\angle B=\angle C, \angle A=90^{\circ}$
$90^{\circ}+2 \angle B=180^{\circ}$
$2 \angle B=180^{\circ}-90^{\circ}=90^{\circ}$
$\Rightarrow \angle B=45^{\circ}$
So, $\angle C=\angle B=45^{\circ}$.

\#463842
Topic: Properties of Triangles
Show that the angles of an equilateral triangle are 60° each.

Solution

For an equilateral triangle, all sides are equal.
Assuming an equilateral $\triangle A B C$,
Then,
$A B=A C=B C$.
$\Rightarrow \angle A=\angle B=\angle C$
(Angles opp. to equal sides are equal)

For a triangle, by angle sum property,
$\angle A+\angle B+\angle C=180^{\circ}$
Substituting
$\Rightarrow \angle A=\angle B=\angle C$
$\therefore \angle A+\angle A+\angle A=180^{\circ}$
$\Rightarrow 3 \angle A=180^{\circ}$
$\Rightarrow \angle A=60^{\circ}$
$\therefore \angle A=\angle B=\angle C=60^{\circ}$

So, each angle of an equilateral triangle is 60°.

\#463854

Topic: Congruent Triangles

$\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$. If $A D$ is extended to intersect $B C$ at P, show that (i) $\triangle A B D \cong \triangle A C D$
(ii) $\triangle A B P \cong \triangle A C P$
(iii) $A P$ bisects $\angle A$ as well as $\triangle D$
(iv) $A P$ is the perpendicular bisector of $B C$

Solution

(i) In $\triangle A B D$ and $\triangle A C D$,
$A B=A C \quad \ldots .($ since $\triangle A B C$ is isosceles)
$A D=A D \quad$....(common side)
$B D=D C \quad \ldots .($ since $\triangle B D C$ is isosceles)
$\triangle A B D \cong \triangle A C D \quad$.....SSS test of congruence,
$\therefore \angle B A D=\angle C A D$ i.e. $\angle B A P=\angle P A C \quad$.....c.a.c.t.
(ii) In $\triangle A B P$ and $\triangle A C P$,
$A B=A C \quad \ldots$ (since $\triangle A B C$ is isosceles)
$A P=A P \quad . .($ common side)
$\angle B A P=\angle P A C \quad$....from (i)
$\triangle A B P \cong \triangle A C P \quad$... SAS test of congruence
$\therefore B P=P C \quad$...c.s.c.t.
$\angle A P B=\angle A P C \quad$...c.a.c.t.
(iii) Since $\triangle A B D \cong \triangle A C D$
$\angle B A D=\angle C A D \quad$....from (i)
So, $A D$ bisects $\angle A$
i.e. $A P$ bisects $\angle A$

In $\triangle B D P$ and $\triangle C D P$,
$D P=D P \quad$...common side
$B P=P C \quad$...from (ii)
$B D=C D \quad \ldots$ (since $\triangle B D C$ is isosceles)
$\triangle B D P \cong \triangle C D P \quad \ldots$. SSS test of congruence
$\therefore \angle B D P=\angle C D P \quad$....c.a.c.t.
$\therefore D P$ bisects $\angle D$
So, $A P$ bisects $\angle D \quad . .$. (iv)
From (iii) and (iv),
$A P$ bisects $\angle A$ as well as $\angle D$.
(iv) We know that
$\angle A P B+\angle A P C=180^{\circ} \quad \ldots .($ angles in linear pair)
Also, $\angle A P B=\angle A P C \quad$...from (ii)
$\therefore \angle A P B=\angle A P C=\frac{180^{\circ}}{2}=90^{\circ}$
$B P=P C$ and $\angle A P B=\angle A P C=90^{\circ}$

Hence, $A P$ is perpendicular bisector of $B C$.

\#463855

Topic: Congruent Triangles
$A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Show that
(i) $A D$ bisects $B C$ (ii) $A D$ bisects $\angle A$

Solution

In $\triangle A B C$,
$A D$ is the altitude drawn from vertex A to side $B C$
$\therefore \angle D=90^{\circ}$
and $A B=A C$ (Given)

In $\triangle A D B$ and $\triangle A D C$,
Hypotenuse $A B=$ Hypotenuse $A C$ (Given)
Side $A D=$ Side $A D$ (Common Side)
$\angle A D C=\angle A D B$
$\triangle A D B \cong \triangle A D C$
$B D=D C(C P C T)$
$\therefore D$ is the midpoint of $B C$,
i.e. $A D$ bisects $B C$.
$\angle B A D=\angle D A C(\mathrm{CPCT})$
$A D$ is bisector of $\angle A$.

\#463856
Topic: Congruent Triangles

Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides $P Q$ and $Q R$ and median $P N$ of $\triangle P Q R$ (see Fig). Show that: (i) $\triangle A B M \cong \triangle P Q N$
(ii) $\triangle A B C \cong \triangle P Q R$

Solution

In $\triangle A B C$ and $\triangle P Q R$
Given:
$A B=P Q$
$A M=P N$
$B C=Q R$
$\therefore \frac{1}{2} B C=\frac{1}{2} Q R$
$\therefore B M=Q N \quad . .(1)$

In $\triangle A B M$ and $\triangle P Q N$,
Given:
$A B=P Q$
$B M=Q N \quad \ldots$ from (1)
$A M=P N$
$\therefore \triangle A B M \cong \triangle P Q N$ (By SSS test of congruence)
$\therefore \angle B=\angle Q(\mathrm{CPCT}) \quad . .(2)$

In $\triangle A B C$ and $\triangle P Q R$,
$A B=P Q$ (Given)
$B C=Q R$ (Given)
$\angle B=\angle Q \quad \ldots$ from (2)
$\therefore \triangle A B C \cong \triangle P Q R$ (By SAS test of congruence)

\#463858

Topic: Congruent Triangles
$B E$ and $C F$ are two equal altitudes of a triangle $A B C$. Using RHS congruence rule, prove that the triangle $A B C$ is isosceles.

Solution

In $\triangle B C F$ and $\triangle C B E$,
$\angle B F C=\angle C E B\left(\right.$ Each $\left.90^{\circ}\right)$
Hyp. $B C=$ Hyp. $B C$ (Common Side)
Side $F C=$ Side $E B$ (Given)
\therefore By R.H.S. criterion of congruence, we have
$\triangle B C F \cong \triangle C B E$
$\therefore \angle F B C=\angle E C B(\mathrm{CPCT})$

In $\triangle A B C$,
$\angle A B C=\angle A C B$
$[\because \angle F B C=\angle E C B]$
$\therefore A B=A C$ (Converse of isosceles triangle theorem)
$\therefore \triangle A B C$ is an isosceles triangle.

\#463859
Topic: Congruent Triangles
$A B C$ is an isosceles triangle with $A B=A C$. Draw $A P \perp B C$ to show that $\angle B=\angle C$

Solution
In $\triangle A B P$ and $\triangle A C P$,
$\angle A P B=\angle A P C$ (Both equal to 90°)
$A B=A C$
$\because \triangle A B C$ is an isosceles triangle.
$A P=A P$ (Common Side)

By R.H.S. criterion of congruence,
$\triangle A B P \cong \triangle A C P$
$\Rightarrow \angle B=\angle C$ (СРCT)

In $\triangle A B P$ and $\triangle A C P$,
$\angle A P B=\angle A P C$ (Both equal to 90°)
$A B=A C$
$\because \triangle A B C$ is an isosceles triangle
$A P=A P($ Common Side $)$

By R.H.S. criterion of congruence,
$\triangle A B P \cong \triangle A C P$
$\Rightarrow \angle B=\angle C(\mathrm{CPCT})$

\#463861

Topic: Properties of Triangles
Show that in a right angled triangle, the hypotenuse is the longest side.

Solution

Consider $\triangle P Q R$ which is right angled at Q

By angle sum property of a triangle,
$\angle P Q R+\angle P R Q+\angle Q P R=180^{\circ}$
$\Rightarrow 90^{\circ}+\angle R+\angle P=180^{\circ}$
$\Rightarrow \angle R+\angle P=90^{\circ}$
$\Rightarrow \angle R$ and $\angle P$ are acute angles
$\Rightarrow \angle R<90^{\circ}$ and $\angle P<90^{\circ}$
$\Rightarrow \angle R<\angle Q$ and $\angle P<\angle Q$
$\Rightarrow P R>P Q$ and $P R>Q R$
(Side opposite to greater angle is greater)

So, the hypotenuse is the longest side in a triangle.

\#463863

Topic: Properties of Triangles

In the figure, sides $A B$ and $A C$ of $\triangle A B C$ are extended to points P and Q respectively. Also, $\angle P B C<\angle Q C B$. Show that $A C>A B$.

Solution
$\angle P B C<\angle Q C B$ (Given)

Multiply the equation by -1 .
$\Rightarrow-\angle P B C>-\angle Q C B$

Adding 180° on both sides, we get
$\therefore 180^{\circ}-\angle P B C>180^{\circ}-\angle Q C B$

Angles on a straight line add to 180°
Sum of angles $\angle P B C$ and $\angle A B C$ is 180°.
Sum of angles $\angle Q C B$ and $\angle A C B$ is 180°.
So,
$\Rightarrow \angle A B C>\angle A C B$
$\Rightarrow A C>A B$
(Side opposite to greater angle is greater)
\#463864
Topic: Properties of Triangles

In fig, $\angle B<\angle A$ and $\angle C<\angle D$. Show that $A D<B C$.

Solution
It is given that
$\angle B<\angle A$ and $\angle C<\angle D$

We know that side opposite to larger angle is larger
$O D<O C \ldots$ (i)
$A O<B O \ldots$ (ii)

Adding eq(i) and eqn (ii), we get
$A O+O D<B O+O C$
$\Rightarrow A D<B C$
\#463865
Topic: Properties of Triangles

$A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral $A B C D$. Show that $\angle A>\angle C$ and $\angle B>\angle D$.

Solution

In $\triangle A B C$,
$B C>A B \quad \ldots(A B$ is the smallest side, given)
$\angle B A C>\angle B C A$

Similarly, in $\triangle A C D$,
$C D>A D \quad \ldots \ldots(C D$ is the greatest side, given)
$\therefore \angle C A D>\angle A C D \quad$...(ii)
Adding (i) and (ii), we have
$\angle B A C+\angle C A D>\angle B C A+\angle A C D$
$\Rightarrow \angle A>\angle C$

Now, in $\triangle A B D$,
$A D>A B \quad$...Gievn
$\therefore \angle A B D>\angle A D B \quad$...(iii)

Similarly, in $\triangle B C D$,
$C D>B C$
$\angle D B C>\angle B D C \quad$...(iv)

Adding (iii) and (iv), we have
$\angle A B C>\angle A D C$
$\Rightarrow \angle B>\angle D$
\#463867
Topic: Properties of Triangles

In fig, $P R>P Q$ and $P S$ bisects $\angle Q P R$. Prove that $\angle P S R>\angle P S Q$.

Solution

In $\triangle P Q R$,
$P R>P Q$ (Given)
$\Rightarrow \angle P Q R>\angle P R Q$...(1)
(Angle opposite to side of greater length is greater
$P S$ is the bisector of $\angle P$, so $\angle x=\angle y$
Adding $\angle x$ in (1)
$\Rightarrow \angle P Q R+\angle x>\angle P R Q+\angle x$
$\Rightarrow \angle P Q R+\angle x>\angle P R Q+\angle y \quad \ldots$ (2)

In $\triangle P Q S$,
$\angle P Q S+\angle x+\angle P S Q=180^{\circ}$
(Angle sum property of triangle)
$\therefore \angle P Q S+\angle x=180^{\circ}-\angle P S Q \quad . . .$. (3)

In $\triangle P S R$,
$\angle P R S+\angle y+\angle P S R=180^{\circ}$
(Angle sum property of triangle)
$\angle P R S+\angle y=180^{\circ}-\angle P S R$

Using equation (1), (2), (3) we get
$180^{\circ}-\angle P S Q>180^{\circ}-\angle P S R \quad \ldots(4)$
$\Rightarrow-\angle P S Q>-\angle P S R$
$\Rightarrow \angle P S Q<\angle P S R$

So,
$\angle P S R>\angle P S Q$

\#463869
Topic: Theorems of Triangles
$A B C$ is a triangle. Locate a point in the interior of $\triangle A B C$ which is equidistant from all the vertices of $\triangle A B C$.

Solution

Let $O D$ and $O E$ be the perpendicular bisectors of sides $B C$ and $A B$ of $\triangle A B C$ respectively.
\therefore By perpendicular bisector theorem,
O is equidistant from the end points of $\operatorname{seg} B C$ i.e. points B and C.
Similarly, point O is equidistant from end points of seg $A C$ i.e points C and A.
Hence, the point of intersection O of the perpendicular bisectors of sides $A B$ and $B C$ is equidistant from vertices A, B, C of $\triangle A B C$

\#463870
Topic: Theorems of Triangles
In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Solution

Let $B Q$ and $C P$ be the bisectors of $\angle A B C$ and $\angle A C B$ respectively, intersecting in the interior of $\triangle A B C$ at R.
Let $B Q$ intersect side $A C$ in Q and $C P$ intersect side $A B$ in P.
\therefore By angle bisector theorem,
Since, R lies on $B Q$, point R is equidistant from $A B$ and $B C$
Similarly, R lies on $C P$ and is equidistant from $A C$ and $B C$.
So, O is equidistant from $B C$ and $A C$.
Therefore, point O is equidistant from all three sides $A B, B C$ and $C A$ of $\triangle A B C$

\#463872
Topic: Theorems of Triangles

In a huge park, people are concentrated at three points (see Fig):
A : where there are different slides and swings
B : near which a man-made lake is situated,
C : which is near to a large parking and exit
Where should an icecream parlour be set up so that maximum number of persons can approach it?

Solution

To set up a parlor, we should chose a place that is equidistant from A, B and C.
This point can be located by obtaining point of intersection of perpendicular bisector.
So, D is the required point which is equidistant from A, B and C.
\#463884
Topic: Congruent Triangles

$A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal $B D$. Show that
(i) $\triangle A P B \cong \triangle C Q D$
(ii) $A P=C Q$

Solution
(i) In $\triangle A P B$ and $\triangle C Q D$,
$\angle A P B=\angle C Q D=90^{\circ} \quad \ldots$. .given
$\angle A B P=\angle Q D C \quad \ldots$. (alternate interior angles of parallelogram $A B C D$ and $D C \| A B$)
$A B=C D \quad \ldots$. Opposite sides of a Il gm
$\therefore \triangle A P B \cong \triangle C Q D \quad \ldots$. SAA test of congruence
(ii) $\triangle A P B \cong \triangle C Q D \quad$...from (i)
$\therefore A P=C Q \quad$....c.s.c.t
\#463885
Topic: Congruent Triangles

In $\triangle A B C$ and $\triangle D E F, A B=D E, A B \| D E, B C=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F respectively. Show that (i) Quadrilateral $A B E D$ is a parallelogram
(ii) Quadrilateral BEFC is a parallelogram
(ii) $A D \| C E$ and $A D=C F$
(iv) Quadrilateral $A C F D$ is a parallelogram
(v) $A C=D F$
(vi) $\triangle A B C \cong \triangle D E F$

Solution

(i) Consider the quadrilateral $A B E D$

We have, $A B=D E$ and $A B \| D E$

One pair of opposite sides are equal and parallel. Therefore
$A B E D$ is a parallelogram.
(ii) In quadrilateral $B E F C$, we have
$B C=E F$ and $B C \| E F$. One pair of opposite sides are equal and parallel.therefore,$B E F C$ is a parallelogram.
(iii) $A D=B E$ and $A D \| B E$ | As $A B E D$ is a llgm ... (1)
and $C F=B E$ and $C F \| B E$ | As $B E F C$ is a llgm ... (2)
From (1) and (2), it can be inferred
$A D=C F$ and $A D \| C F$
(iv) $A D=C F$ and $A D \| C F$
\Rightarrow One pair of opposite sides are equal and parallel.
$\Rightarrow A C F D$ is a parallelogram
(v) Since $A C F D$ is parallelogram.
$A C=D F \mid$ As Opposite sides of all gm $A C F D$
(vi) In triangles $A B C$ and $D E F$, we have
$A B=D E \mid$ (opposite sides of $A B E D$
$B C=E F$ | (Opposite sides of BEFC
and $C A=F D \mid$ Opposite. sides of $A C F D$
Using SSS criterion of congruence,
$\triangle A B C \cong \triangle D E F$
\#463886
Topic: Congruent Triangles

$A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$. Show that
(i) $\angle A=\angle B$
(ii) $\angle C=\angle D$
(iii) $\triangle A B C \cong \triangle B A D$
(iv) diagonal $A C=$ diagonal $B D$

Solution
Given :
$A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$

To prove :
(i) $\angle A=\angle B$
(ii) $\angle C=\angle D$
(iii) $\triangle A B C \cong \triangle B A D$
(iv) Diagonal $A C=$ diagonal $B D$

Proof:
$A D \| C E$
$A E$ is transversal and $A E$ cuts them at A and E respectively

Therefore, $\angle A+\angle E=180^{\circ} \quad \ldots$ (1)

Since $A B \| C D$ and $A D \| C E$.
$A E C D$ is a parallelogram.

Therefore,
$\Rightarrow A D=C E$
$\Rightarrow B C=C E($ Since $A D=B C($ given $))$

Thus, in $\triangle B C E$
$B C=C E$ (By Angle sum property)
$\angle C E B=\angle C B E$
$180^{\circ}-\angle B=\angle E$
$180^{\circ}-\angle E=\angle B$
$\therefore \angle A=\angle B$
(ii) $\angle B A D=\angle A B D$
$180^{\circ}-\angle B A D=180^{\circ}-\angle A B D$
$\angle A D B=\angle B C D$
$\angle D=\angle C$ i.e. $\angle C=\angle D$
(iii) In $\triangle A B C$ and $\triangle B A D$, we have
$B C=A D$ (Given)
$A B=B A$ (Common)
$\angle A=\angle B$ proved
Using SAS criterion of congruence
$\triangle A B C \cong \triangle B A D$
(iv) Therefore, $A C=B D(C P C T)$
\#463951
Topic: Congruent Triangles

(i) $\triangle M B C \cong \triangle A B D$
(ii) $\operatorname{ar}(B Y X D)=2 \operatorname{ar}(M B C)$
(iii) $\operatorname{ar}(B Y X D)=\operatorname{ar}(A B M M)$
(iv) $\triangle F C B \cong \triangle A C E$
(v) $\operatorname{ar}(C Y X E)=2 \operatorname{ar}(F C B)$
(vi) $\operatorname{ar}(C Y X E)=\operatorname{ar}(A C F G)$
(vii) $\operatorname{ar}(B C E D)=\operatorname{ar}(A B M M)+\operatorname{ar}(A C F G)$

Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler
proof of this theorem in Class X .

Solution
(i)

In $\triangle s M B C$ and $A B D$, we have
$B C=B D$
[Sides of the square BCED]
$M B=A B$
[Sides of the square ABMN]
$\angle M B C=\angle A B D$
[Since Each $\left.=90^{\circ}+\angle A B C\right]$

Therefore by SAS criterion of congruence, we have
$\triangle M B C \cong \delta A B D$
(ii)
$\triangle A B D$ and square $B Y X D$ have the same base $B D$ and are between the same parallels $B D$ and $A X$.
Therefore $\operatorname{ar}(A B D)=\frac{1}{2} \operatorname{ar}(B Y X D)$

But $\triangle M B C \cong \triangle A B D$ [Proved in part (i)]
$\Rightarrow \operatorname{ar}(M B C)=\operatorname{ar}(A B D)$

Therefore $\operatorname{ar}(M B C)=\operatorname{ar}(A B D)=\frac{1}{2} \operatorname{ar}(B Y X D)$
$\Rightarrow \operatorname{ar}(B Y X D)=2 \operatorname{ar}(M B C)$.
(iii)

Square $A B M N$ and $\triangle M B C$ have the same base $M B$ and are between same parallels $M B$ and $N A C$.
Therefore $\operatorname{ar}(M B C)=\frac{1}{2} \operatorname{ar}(A B M N)$
$\Rightarrow \operatorname{ar}(A B M N)=2 \operatorname{ar}(M B C)$
$=\operatorname{ar}(B Y X D)$ [Using part (ii)]
(iv)

In $\triangle s A C E$ and BCF, we have
$C E=B C[$ Sides of the square $B C E D]$
$A C=C F[$ Sides of the square ACFG]
and $\angle A C E=\angle B C F\left[\right.$ Since Each $\left.=90^{\circ}+\angle B C A\right]$
Therefore by SAS criterion of congruence,
$\triangle A C E \cong \triangle B C F$
(v)
$\triangle A C E$ and square $C Y X E$ have the same base $C E$ and are between same parallels $C E$ and $A Y X$
Therefore $\operatorname{ar}(A C E)=\frac{1}{2} \operatorname{ar}(C Y X E)$
$\Rightarrow \operatorname{ar}(F C B)=\frac{1}{2} \operatorname{ar}(C Y X E)[$ Since $\triangle A C E \cong \triangle B C F$, part (iv)]
$\Rightarrow \operatorname{ar}(C Y X E)=2 \operatorname{ar}(F C B)$.
(vi)

Square $A C F G$ and $\Rightarrow B C F$ have the same base $C F$ and are between same parallels $C F$ and $B A G$.
Therefore $\operatorname{ar}(B C F)=\frac{1}{2} \operatorname{ar}(A C F G)$
$\Rightarrow \frac{1}{2} \operatorname{ar}(C Y X E)=\frac{1}{2} \operatorname{ar}(A C F G)[$ Using part $(\mathrm{v})]$
$\Rightarrow \operatorname{ar}(C Y X E)=\operatorname{ar}(A C F G)$
(vii)

From part (iii) and (vi) we have
$\operatorname{ar}(B Y X D)=\operatorname{ar}(A B M N)$
and
$\operatorname{ar}(C Y X E)=\operatorname{ar}(A C F G)$

On adding we get
$\operatorname{ar}(B Y X D)+\operatorname{ar}(C Y X E)=\operatorname{ar}(A B M N)+\operatorname{ar}(A C F G) \operatorname{ar}(B C E D)=\operatorname{ar}(A B M N)+\operatorname{ar}(A C F G)$

\#464041

Topic: Properties of Triangles
 talk to each other. Find the length of the string of each phone.

Solution

Let Ankur be represented as A, Syed as S and David as D.
The boys are sitting at equal distance.
Hence, $\triangle A S D$ is an equilateral triangle.
Let the radius of the circular park be r meters.
$\therefore O S=r=20 \mathrm{~m}$.
Let the length of each side of $\triangle A S D$ be x meters.
Draw $A B \perp S D$
$\therefore S B=B D=\frac{1}{2} S D=\frac{x}{2} \mathrm{~m}$

In $\triangle A B S, \angle B=90^{\circ}$
By Pythagoras theorem,
$A S^{2}=A B^{2}+B S^{2}$
$\therefore A B^{2}=A S^{2}-B S^{2}$
$=x^{2}-\left(\frac{x}{2}\right)^{2}=\frac{3 x^{2}}{4}$
$\therefore A B=\frac{\sqrt{3} x}{2} \mathrm{~m}$
Now, $A B=A O+O B$
$O B=A B-A O$
$O B=\left(\frac{\sqrt{3} x}{2}-20\right) \mathrm{m}$

In $\triangle O B S$,
$O S^{2}=O B^{2}+S B^{2}$
$20^{2}=\left(\frac{\sqrt{3} x}{2}-20\right)^{2}+\left(\frac{x}{2}\right)^{2}$
$400=\frac{3}{4} x^{2}+400-2(20)\left(\frac{\sqrt{3} x}{2}\right)+\frac{x^{2}}{4}$
$0=x^{2}-20 \sqrt{3} x$

$$
\therefore x=20 \sqrt{3} \mathrm{~m}
$$

Length of string of each phone is $20 \sqrt{3} \mathrm{~m}$.

\#464081

Topic: Properties of Triangles
Construct an equilateral triangle, given its side $=3$ and justify the construction.

Solution

Let equilateral triangle be $A B C$
Draw $A B=5 C M$
Taking A and B as centers, radius $=A B=5 \mathrm{~cm}$
draw two areas intersecting each other at A
join $A B$ and $A C$
for justification just measure the length of each sides

