#417855
Topic: Cartesian Product

If \(\left(\frac{x}{3} + 1, \frac{y}{3} - \frac{2}{3} \right) = \left(\frac{5}{3}, \frac{1}{3} \right) \) find the values of \(x \) and \(y \)

Solution

It is given that \(\left(\frac{x}{3} + 1, \frac{y}{3} - \frac{2}{3} \right) = \left(\frac{5}{3}, \frac{1}{3} \right) \)

Since the ordered pairs are equal the corresponding element will also be equal

Therefore \(\frac{x}{3} + 1 = \frac{5}{3} \) and \(\frac{y}{3} - \frac{2}{3} = \frac{1}{3} \)

\[\Rightarrow y = 1 \]
\[\Rightarrow \frac{x}{3} + 1 = \frac{5}{3} \]
\[\Rightarrow x = 2 \]
\[\therefore x = 2 \text{ and } y = 1 \]

#417856
Topic: Cartesian Product

If the set \(A \) has 3 elements and the set \(B = \{3, 4, 5\} \) then find the number of elements in \(A \times B \)?

Solution

It is given that set \(A \) has 3 elements and the elements of set \(B \) are 3, 4, and 5

\[\Rightarrow \text{Number of elements in set } B = 3 \]

Number of elements in \(A \times B \)

\[= \text{Number of elements in } A \times \text{Number of elements in } B \]
\[= 3 \times 3 = 9 \]

Thus the number of elements in \(A \times B \) is 9

#417864
Topic: Cartesian Product

If \(G = \{7, 8\} \) and \(H = \{5, 4, 2\} \), find \(G \times H \) and \(H \times G \).

Solution

\[G = \{7, 8\} \text{ and } H = \{5, 4, 2\} \]

We know that the Cartesian product of \(P \times Q \) of two non-empty sets \(P \) and \(Q \) is defined as

\[P \times Q = \{ (p, q) \mid p \in P, q \in Q \} \]

\[\therefore G \times H = \{ (7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2) \} \]

and \(H \times G = \{ (5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8) \} \)

#417877
Topic: Cartesian Product

State whether each of the following statements are true or false. If the statement is false rewrite the given statement correctly.

(i) \(\text{If } P = \{m, n\} \text{ and } Q = \{n, m\} \text{ then } P \times Q = \{\{m, n\}, \{n, m\}\} \)

(ii) \(\text{If } A \text{ and } B \text{ are non-empty sets then } A \times B \text{ is a non-empty set of ordered pairs } \{x, y\} \text{ such that } x \in A \text{ and } y \in B \)

(iii) \(\text{If } A = \{1, 2\} \text{ and } B = \{3, 4\} \text{ then } A \times (B \cap \emptyset) = \emptyset \)

Solution
(i) Given \(P = \{m, n\} \) and \(Q = \{n, m\} \) then
\[
P \times Q = [(m, n), (m, m), (n, n), (n, m)]
\]
So, the given value of \(P \times Q \) is incorrect.
Hence, the given statement (i) is false.

(ii) If \(A \) and \(B \) are non-empty sets, then \(A \times B \) is a non-empty set of ordered pairs \((x, y)\) such that \(x \in A \) and \(y \in B \)
Hence, the given statement (ii) is true.

(iii) \(A = \{1, 2\} \) and \(B = \{3, 4\} \)
\[
A \times (B \cap \phi) = A \times \phi = \phi
\]
So, (iii) is true.

417884
Topic: Cartesian Product

If \(A = \{1, 1\} \) then find \(A \times A \).

Solution

It is known that for any non-empty set \(A \), \(A \times A \) is defined as
\[
A \times A = \{(a, b) : a, b \in A\}
\]
It is given that \(A = \{1, 1\} \)
\[
A \times A = \{(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1)
\]
\[
\}

417885
Topic: Cartesian Product

If \(A \times B = \{(a, x), (a, y), (b, x), (b, y)\} \) find \(A \) and \(B \).

Solution

It is given that \(A \times B = \{(a, x), (a, y), (b, x), (b, y)\} \)

We know that the Cartesian product of two non-empty sets \(P \) and \(Q \) is defined as
\[
P \times Q = \{(p, q) : p \in P, q \in Q\}
\]
\[
A \times B = \{(a, x), (a, y), (b, x), (b, y)\}
\]
\[
\text{Thus} \ A = \{a, b\} \text{ and } B = \{x, y\}
\]

417886
Topic: Cartesian Product

Let \(A = \{1, 2\} \), \(B = \{1, 2, 3, 4\} \), \(C = \{5, 6\} \) and \(D = \{5, 6, 7, 8\} \) verify that

(i) \(A \times (B \cap C) = (A \times B) \cap (A \times C) \)

(ii) \(A \times C \) is a subset of \(B \times D \)

Solution
I) To verify: \(A \times (B \cap C) = (A \times B) \cap (A \times C) \)

We have \(B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \emptyset \)

\[L.H.S = A \times (B \cap C) = A \times \emptyset = \emptyset \]

\[A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\} \]

\[A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\} \]

\[R.H.S = (A \times B) \cap (A \times C) = \emptyset \]

\[L.H.S = R.H.S \]

Hence \(A \times (B \cap C) = (A \times B) \cap (A \times C) \)

II) To verify: \(A \times C \) is a subset of \(B \times D \)

\[A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\} \]

\[B \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\} \]

We can observe that all the elements of set \(A \times C \) are the elements of set \(B \times D \)

Therefore \(A \times C \) is a subset of \(B \times D \)

#417887

Topic: Cartesian Product

Let \(A = \{1, 2\} \) and \(B = \{3, 4\} \). Write \(A \times B \) and find how many subsets will \(A \times B \) have? List them.

Solution

\[A = \{1, 2\} \) and \(B = \{3, 4\} \]

\[A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\} \]

\[n(A \times B) = 4 \]

We know that if \(n(A) = m \) and \(n(B) = n \) then

\[\text{number of subsets of } A \times B = 2^{m \times n} \]

Therefore the set \(A \times B \) has \(2^4 = 16 \) subsets.

These are:

\[\emptyset, (1, 3), (1, 4), (2, 3), (2, 4), \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{1, 3, 2, 4\}, \{1, 3, 2, 4\}, \{1, 3\}, \{2, 3\}, \{1, 4\}, \{2, 4\}, \{1, 3, 2, 4\}, \{1, 3, 2, 4\}, \{1, 3\}, \{2, 3\}, \{1, 4\}, \{2, 4\}, \{1, 3, 2, 4\} \]

#417889

Topic: Cartesian Product

Let \(A \) and \(B \) be two sets such that \(n(A) = 3 \) and \(n(B) = 2 \). If \((x, y), (y, z) \) are in \(A \times B \) find \(A \times B \) where \(x, y, \) and \(z \) are distinct elements.

Solution

It is given that \(n(A) = 3 \) and \(n(B) = 2 \) and \((x, y), (y, z) \) are in \(A \times B \)

We know that \(A = \) set of first elements of the ordered pair elements of \(A \times B \)

\[B = \) set of second elements of ordered pair elements of \(A \times B \]

\[x, y \) and \(z \) are the elements of \(A \) and \(1 \) and \(2 \) are the elements of \(B \)

Since \(n(A) = 3 \) and \(n(B) = 2 \) it is clear that \(A = \{x, y, z\} \) and \(B = \{1, 2\} \)

#417891

Topic: Cartesian Product

The cartesian product \(A \times A \) has 9 elements among which are found \(\{1, 0\} \) and \(\{0, 1\} \). Find the set \(A \) and the remaining elements of \(A \times A \)

Solution

The cartesian product \(A \times A \) has 9 elements among which are found \(\{1, 0\} \) and \(\{0, 1\} \). Find the set \(A \) and the remaining elements of \(A \times A \)
We know that if \(n(A) = p \) and \(n(B) = q \), then \(n(A \times B) = n(A) \times n(B) = pq \).

\[n(A \times A) = n(A) \times n(A) \]

It is given that \(n(A \times A) = 9 \).

\[n(A) \times n(A) = 9 \]

\[n(A) = 3 \]

The ordered pairs \((-1, 0)\) and \((0, 1)\) are two of the elements of \(A \times A \).

Now, \(A \times A = \{(a, b) : a \in A\} \). Therefore \(-1, 0\) and \(1\) are elements of \(A \).

Since \(n(A) = 3 \), so set \(A = \{-1, 0, 1\} \).

The remaining elements of set \(A \times A \) are \((1, -1), (-1, 1), (0, 0), (1, 0), (0, -1), (0, 1)\) and \((1, 1)\).

#417893

Topic: Relations

Let \(A = \{1, 2, 3, \ldots, 14\} \). Define a relation \(R \) from \(A \) to \(A \) by \(R = \{(x, y) : 3x - y = 0 \text{ where } x, y \in A\} \). Write down its domain, co-domain and range.

Solution

The relation \(R \) from \(A \) to \(A \) is given as

\[R = \{(x, y) : 3x - y = 0 \text{ where } x, y \in A\} \]

i.e., \(R = \{(x, y) : 3x = y, x, y \in A\} \)

\[R = \{(1, 3), (2, 6), (3, 9), (4, 12)\} \]

The domain of \(R \) is the set of all first elements of the ordered pairs in the relation.

\[\text{Domain of } R = \{1, 2, 3, 4\} \]

The whole set \(A \) is the co-domain of the relation \(R \).

\[\text{Codomain of } R = A = \{1, 2, 3, \ldots, 14\} \]

The range of \(R \) is the set of all second elements of the ordered pairs in the relation.

\[\text{Range of } R = \{3, 6, 9, 12\} \]

#417896

Topic: Relations

Define a relation \(R \) on the set \(N \) of natural numbers by \(R = \{(x, y) : y = x + 5, x \text{ is a natural number less than } 4, x, y \in N\} \). Depict this relationship using roster form. Write down the domain and the range.

Solution

Given definition of \(R \) is

\[R = \{(x, y) : y = x + 5, x \text{ is a natural number less than } 4, x, y \in N\} \]

The natural numbers less than 4 are 1, 2 and 3.

\[R = \{(1, 6), (2, 7), (3, 8)\} \]

The domain of \(R \) is the set of all first elements of the ordered pairs in the relation.

\[\text{Domain of } R = \{1, 2, 3\} \]

The range of \(R \) is the set of all second elements of the ordered pairs in the relation.

\[\text{Range of } R = \{6, 7, 8\} \]

#417898

Topic: Relations

\(A = \{1, 2, 3, 5\} \) and \(B = \{4, 6, 9\} \). Define a relation \(R \) from \(A \) to \(B \) by \(R = \{(x, y) : \text{the difference between } x \text{ and } y \text{ is odd } x, y \in A, y \in B\} \). Write \(R \) in roster form.

Solution

\(A = \{1, 2, 3, 5\} \) and \(B = \{4, 6, 9\} \)

\[R = \{(x, y) : \text{the difference between } x \text{ and } y \text{ is odd } x, y \in A, y \in B\} \]

\[R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\} \]

#417901

Topic: Relations

\(A = \{1, 2, 3, 5\} \) and \(B = \{4, 6, 9\} \). Define a relation \(R \) from \(A \) to \(B \) by \(R = \{(x, y) : \text{the difference between } x \text{ and } y \text{ is odd } x, y \in A, y \in B\} \). Write \(R \) in roster form.
Let $A = \{1, 2, 3, 4, 6\}$ and R be the relation on A defined by $(a, b) \in R$ if $a, b \in A, b$ is exactly divisible by a.

(i) Write R in roster form
(ii) Find the domain of R
(iii) Find the range of R

Solution

$A = \{1, 2, 3, 4, 6\}$

$R = \{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}$

(i) $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (6, 6)\}$
(ii) Domain of $R = \{1, 2, 3, 4, 6\}$
(iii) Range of $R = \{1, 2, 3, 4, 6\}$

#417902

Topic: Relations

Determine the domain and range of the relation R defined by $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}$

Solution

$R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}$

$\Rightarrow R = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$

\therefore Domain of $R = \{0, 1, 2, 3, 4, 5\}$

Range of $R = \{5, 6, 7, 8, 9, 10\}$

#417903

Topic: Relations

Write the relation $R = \{(x, x^2): x \text{ is a prime number less than 10}\}$ in roster form.

Solution

$R = \{(x, x^2): x \text{ is a prime number less than 10}\}$

The prime numbers less than 10 are 2, 3, 5 and 7.

$\therefore R = \{(2, 4), (3, 9), (5, 25), (7, 49)\}$

#417904

Topic: Relations

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations form A to B.

Solution

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

$\therefore A \times B = \{(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)\}$

Since $n(A \times B) = 6$.

The number of subsets of $A \times B$ is 2^6.

#417905

Topic: Functions

Which of the following relations are functions? Give reasons.

If it is a function determine its domain and range.

(i) $\{(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)\}$

(ii) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$

(iii) $\{(1, 3), (1, 5), (2, 5)\}$

Solution

(i) \(\{(2, 1), (5, 1), (8, 1), (1, 1), (14, 1), (17, 1)\}\)
It is a function as every input has a single output.
So, 2, 5, 8, 11, 14 and 17 are the elements of the domain of the given relation.
Here domain = \{2, 5, 8, 11, 14, 17\} and range = \{1\}

(ii) \(\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}\)
It is a function as every input has a single output.
So, 2, 4, 6, 8, 10, 12 and 14 are the elements of the domain of the given relation.
Here domain = \{2, 4, 6, 8, 10, 12, 14\} and range = \{1, 2, 3, 4, 5, 6, 7\}

(iii) \(\{(1, 3), (1, 5), (2, 5)\}\)
Since the element 1 corresponds to two different images i.e., 3 and 5. So, this relation is not a function.

#417906

Topic: Functions

Find the domain and range of the following real function:

(i) \(f(x) = -\mid x\mid\)
(ii) \(f(x) = \sqrt{9-x^2}\)

Solution

(i) \(f(x) = -\mid x\mid, x \in \mathbb{R}\)
We know that \(\mid x\mid \begin{cases}
- x, x \geq 0 \\
+ x, x < 0
\end{cases}\)
\(\therefore f(x) = -\mid x\mid \begin{cases}
- x, x \geq 0 \\
+ x, x < 0
\end{cases}\)

Since, \(f(x)\) is defined for \(x \in \mathbb{R}\)
Domain of \(f\) is \(\mathbb{R}\)
It can be observed that the range of \(f(x) = -\mid x\mid\) is all real numbers except positive real numbers
\(\therefore\) The range of \(f\) is \([-\infty, 0]\)

(ii) \(f(x) = \sqrt{9-x^2}\)
For this function to be defined,
\(9-x^2 \geq 0\)
\(\Rightarrow -3 \leq x \leq 3\)
For any value of \(x\) such that \(-3 \leq x \leq 3\) the value of \(f(x)\) will lie between 0 and 3
\(\therefore\) The range of \(f\) is \([0, 3]\)

#417907

Topic: Functions

A function \(r\) is defined by \(r(x) = 2x - 5\). Write down the values of

(i) \(r(0)\)
(ii) \(r(7)\)
(iii) \(r(-3)\)

Solution

\(r\) is given by \(r(x) = 2x - 5\)
Then, we have
(i) \(r(0) = 2(0) - 5 = -5\)
(ii) \(r(7) = 2(7) - 5 = 9\)
(iii) \(r(-3) = 2(-3) - 5 = -11\)
#417908

Topic: Functions

The function \(f(x) \) which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by \(f(C) = \frac{9C}{5} + 32^\circ \)

Find:

(i) \(60^\circ \)

(ii) \(528^\circ \)

(iii) \(10^\circ \)

(iv) The value of \(C \) when \(f(C) = 212^\circ F \)

Solution

The given function is

\[f(C) = \frac{9C}{5} + 32^\circ \]

(i) \(60^\circ = \frac{9 \times 0}{5} + 32^\circ = 0 + 32^\circ = 32^\circ F \)

(ii) \(528^\circ = \frac{9 \times 28^\circ}{5} + 32^\circ = \frac{252^\circ}{5} + 32^\circ = 50.4^\circ F \)

(iii) \(10^\circ = \frac{9 \times (-10^\circ)}{5} + 32^\circ = \frac{-90^\circ}{5} + 32^\circ = -18^\circ F \)

(iv) It is given that \(f(C) = 212^\circ F \)

\[\frac{9C}{5} + 32^\circ = 212^\circ F \]

\[9C = 180^\circ \times 5 \]

\[C = \frac{900^\circ}{9} = 100^\circ \]

Thus the value of Celsius temperature is \(100^\circ \) when Fahrenheit temperature is \(212^\circ \).

#417910

Topic: Functions

Find the range of each of the following functions

(i) \(f(x) = 2 - 3x \), \(x \in \mathbb{R}, x > 0 \)

(ii) \(g(x) = x^2 + 2 \), \(x \) is a real number

(iii) \(h(x) = x \), \(x \) is a real number

Solution
(i) Given $x > 0$
\[\Rightarrow 3x > 0 \]
\[\Rightarrow -3x < 0 \]
\[\Rightarrow 2 - 3x < 2 \]
\[\Rightarrow \alpha(x) < 2 \]
\[\therefore \text{Range of } f = (-\infty, 2) \]

(ii) Since, for any real number x, x^2 is a real number
\[\Rightarrow x^2 + 2 \geq 0 + 2 \]
\[\Rightarrow x^2 + 2 \geq 2 \]
\[\Rightarrow \beta(x) \geq 2 \]
\[\therefore \text{Range of } f = [2, \infty) \]

(iii) $\gamma(x) = x$, x is a real number
It is clear that the range of γ is the set of all real numbers
\[\therefore \text{Range of } f = \mathbb{R} \]

#417913

Topic: Functions

The relation f is defined by $f(x) = \begin{cases} x^2, & 0 \leq x \leq 3 \\ 3x, & 3 < x \leq 10 \end{cases}$

The relation g is defined by $g(x) = \begin{cases} x^2, & 0 \leq x \leq 2 \\ 3x, & 2 < x \leq 10 \end{cases}$

Show that f is a function and g is not a function.

Solution

The relation f is defined as $f(x) = \begin{cases} x^2, & 0 \leq x \leq 3 \\ 3x, & 3 < x \leq 10 \end{cases}$

It is observed that for
\[0 \leq x \leq 3, \ f(x) = x^2 \]
\[3 \leq x \leq 10, \ f(x) = 3x \]

Also at $x = 3, \ f(3) = 3^2 = 9$, or $f(3) = 3 \times 3 = 9$

i.e., at $x = 3, \ f(x) = 9$

Therefore for $0 \leq x \leq 10$, the images of $f(x)$ are unique.

Thus the given relation is a function.

The relation g is defined as $g(x) = \begin{cases} x^2, & 0 \leq x \leq 2 \\ 3x, & 2 < x \leq 10 \end{cases}$

It can be observed that for $x = 2$, $g(x) = 2^2 = 4$ and $g(x) = 3 \times 2 = 6$

Hence element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6.

Hence, this relation is not a function.

#417914

Topic: Functions

If $f(x) = x^2$ find $\frac{f(10) - f(5)}{(10 - 5)}$

Solution

Given, $f(x) = x^2$

\[\frac{f(10) - f(5)}{(10 - 5)} = \frac{10^2 - 5^2}{5} = \frac{101 - 25}{5} = \frac{76}{5} = 15.2 \]

#417915

Topic: Functions
Find the domain of the function \(f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} \)

Solution

The given function is, \(f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} \)

\[f(x) = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)} \]

It can be seen that function \(f \) is defined for all real numbers except at \(x = 6 \) and \(x = 2 \)

Hence the domain of \(f \) is \(\mathbb{R} - \{2, 6\} \)

Find the domain and range of the real function \(f \) defined by \(f(x) = \sqrt{x-1} \)

Solution

The given real function is \(f(x) = \sqrt{x-1} \)

It can be seen that \(\sqrt{x-1} \) is defined for \((x-1) \geq 0 \)

i.e., \(f(x) = \sqrt{x-1} \) is defined for \(x \geq 1 \)

Therefore the domain of \(f \) is the set of all real numbers greater than or equal to \(1 \) i.e.,

the domain of \(f \) is \([1, \infty) \)

As \(x \geq 1 \)

\[(x-1) \geq 0 \]

\[\sqrt{x-1} \geq 0 \]

\(f(x) \geq 0 \)

Therefore the range of \(f \) is the set of all real numbers greater than or equal to \(0 \)

i.e., the range of \(f \) is \((0, \infty) \)

Find the domain and range of the real function \(f \) defined by \(f(x) = |x-1| \)

Solution

The given real function is \(f(x) = |x-1| \)

It is clear that \(|x-1| \) is defined for all real numbers

i.e., \(f \) is defined for all real numbers

Thus for \(x \in \mathbb{R} \), \(|x-1| \) assumes all non-negative real numbers.

Hence the range of \(f \) is the set of all non-negative real numbers \([0, \infty) \)

Let \(f : \mathbb{R} \rightarrow \mathbb{R} : x \mapsto \frac{x^2}{1 + x^2} \) be a function from \(\mathbb{R} \) into \(\mathbb{R} \) Determine the range of \(f \)

Solution
Let \(\frac{x^2}{y} = \frac{1}{1+y} \)

\[\Rightarrow y + y^2 = x^2 \]
\[\Rightarrow y = x^2(1-y) \]
\[\Rightarrow \frac{y}{x^2} = \frac{1}{1+y} \]
\[\Rightarrow x = \sqrt{\frac{y}{1-y}} \]

Since, \(x \) is real

\[\frac{y}{1-y} \geq 0 \]
\[\Rightarrow |y| \geq 0 \]
\[\Rightarrow y(1-y) \geq 0 \]
\[\Rightarrow y(1-y) = 0 \text{ and } (1-y)^2 > 0 \]
\[\Rightarrow 0 \leq y \leq 1 \text{ and } y > -1 \]
\[\Rightarrow 0 \leq y < 1 \]

Hence, \(0 \leq y < 1 \)

Range of \(f \) is \([0, 1) \)

#417921

Topic: Algebra of Real Functions

Let \(f, g : \mathbb{R} \rightarrow \mathbb{R} \) be defined respectively by \(f(x) = x + 1, g(x) = 2x - 3 \). Find \(f + g, f - g \), and \(\frac{f}{g} \).

Solution

\(f, g : \mathbb{R} \rightarrow \mathbb{R} \) is defined as

\[f(x) = x + 1 \]
\[g(x) = 2x - 3 \]

Now, \((f+g)(x) = f(x) + g(x) = (x + 1) + (2x - 3) = 3x - 2 \)
\[\therefore (f+g)(x) = 3x - 2 \]

Now, \((f-g)(x) = f(x) - g(x) = (x + 1) - (2x - 3) = x + 1 - 2x + 3 = -x + 4 \)
\[\therefore (f-g)(x) = -x + 4 \]

\[\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{x+1}{2x-3} \neq 0, x \in \mathbb{R} \]
\[\therefore \left(\frac{f}{g} \right)(x) = \frac{x+1}{2x-3} \neq 0 \text{ or } 2x \neq 3 \]
\[\therefore \left(\frac{f}{g} \right)(x) = \frac{x+1}{2x-3} \neq \frac{3}{2} \]

#417922

Topic: Functions

Let \(f : [1, 3], \{0, -3\} \rightarrow [2, 3], \{0, -3\} \) be a function from \([1, 3] \) defined by \(\xi(x) = ax + b \) for some integers \(a, b \). Determine \(a, b \).

Solution
\[f = (1, 2, 3, 0, -1, -2) \]
\[g = \{a \in \mathbb{R} : a = \sqrt{a^2} \} \]
\[(a, b) \in f \]
\[(0, 1) \in f \Rightarrow f(0) = 1 \]
\[a + b = 1 \Rightarrow a = 1 \]
\[(0, -1) \in f \Rightarrow f(0) = -1 \]
\[a + b = -1 \Rightarrow b = -1 \]

On substituting \(b = -1 \) in eqn (i), we get
\[a + (-1) = 1 \]
\[a = 1 + 1 = 2 \]

Thus the respective values of \(a \) and \(b \) are 2 and -1

#417923

Topic: Relations

Let \(R \) be a relation from \(N \) to \(N \) defined by \(R = \{(a, b) : a, b \in N \text{ and } a = b^2\} \). Are the following true?

(i) \((a, b) \in R \) for all \(a \in N \)

(ii) \((a, b) \in R \) implies \((b, a) \in R \)

(iii) \((a, b) \in R, (b, c) \in R \) implies \((a, c) \in R \)

Justify your answer in each case

Solution

\[R = \{(a, b) : a, b \in N \text{ and } a = b^2\} \]

(i) It can be seen that \(2 \in N \) however, \(2 \times 2^2 = 4 \)

Therefore the statement \((a, a) \in R \) for all \(a \in N \) is not true

(ii) It can be seen that \((9, 3) \in N \) because \(9, 3 \in N \) and \(9 = 3^2 \)

Now \(3 \times 3^2 = 27 \)

\[\therefore (3, 3) \notin N \]

Therefore the statement \((a, b) \in R \) implies \((b, a) \in R \) is not true.

(iii) It can be seen that \((9, 3) \in R, (16, 4) \in R \) because \(9, 3, 16, 4 \in N \) and \(9 = 3^2 \) and \(16 = 4^2 \)

Now \(9 \times 4^2 = 144 \)

\[\therefore (9, 4) \notin N \]

Therefore the statement \((a, b) \in R, (b, c) \in R \) implies \((a, c) \in R \) is not true

#418034

Topic: Functions

Let \(A = \{1, 2, 3, 4\} \) and \(B = \{1, 5, 9, 11, 15, 16\} \) and \(f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\} \) Are the following true?

(i) \(f \) is a relation from \(A \) to \(B \)

(ii) \(f \) is a function from \(A \) to \(B \)

Justify your answer in each case

Solution
\[A = \{1, 2, 3, 4\} \text{ and } B = \{1, 5, 9, 11, 15, 16\} \]

\[A \times B = \{(1, 1), (1, 5), (1, 9), (1, 11), (1, 15), (1, 16), (2, 1), (2, 5), (2, 9), (2, 11), (2, 15), (2, 16), (3, 1), (3, 5), (3, 9), (3, 11), (3, 15), (3, 16), (4, 1), (4, 5), (4, 9), (4, 11), (4, 15), (4, 16)\} \]

It is given that \(r = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\} \)

(i) A relation from a non-empty set \(A \) to a non-empty set \(B \) is a subset of the Cartesian product \(A \times B \)

It is observed that \(r \) is a subset of \(A \times B \)

Thus \(r \) is a relation from \(A \) to \(B \)

(ii) Since the element 2 corresponds to two different images i.e., 9 and 11. So, relation \(r \) is not a function.

#418054

Topic: Functions

Let \(r \) be the subset of \(\mathbb{Z} \times \mathbb{Z} \) defined by \(r = \{(a, b) : a, b \in \mathbb{Z}\} \). Is \(r \) a function from \(\mathbb{Z} \to \mathbb{Z} \)? Justify your answer.

Solution

The relation \(r \) is defined as

\[r = \{(a, b) : a, b \in \mathbb{Z}\} \]

We know that a relation \(r \) from set \(A \) to set \(B \) is said to be a function if every element of set \(A \) has unique images in set \(B \).

Since \(2, 6 \in \mathbb{Z} \),

\[(2 \times 6, 2 \times 6) \in r \]

Again since, \(-2, -6 \in \mathbb{Z} \),

\[(-2 \times -6, -2 \times (-6)) \in r \]

i.e., \((12, 8), (12, -8) \in r \)

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and \(-8\).

Thus relation \(r \) is not a function.

#418064

Topic: Functions

Let \(A = \{9, 10, 11, 12, 13\} \) and let \(r : A \to \mathbb{N} \) be defined by \(r(n) = \) the highest prime factor of \(n \). Find the range of \(r \).

Solution

\[A = \{9, 10, 11, 12, 13\} \]

\(r : A \to \mathbb{N} \) is defined as

\[r(n) = \text{The highest prime factor of } n \]

Prime factor of 9 = 3

Prime factors of 10 = 2, 5

Prime factors of 11 = 11

Prime factors of 12 = 2, 3

Prime factors of 13 = 13

\[r(9) = \text{The highest prime factor of 9 = 3} \]

\[r(10) = \text{The highest prime factor of 10 = 5} \]

\[r(11) = \text{The highest prime factor of 11 = 11} \]

\[r(12) = \text{The highest prime factor of 12 = 3} \]

\[r(13) = \text{The highest prime factor of 13 = 13} \]

Thus range of \(r \) is the set of all \(n \) such that \(n \in A \)

\[\text{Is } s = \{3, 5, 11, 13\} \]
How many elements has $P(A)$, if $A = \emptyset$?

Solution

We know that if A is a set with m elements i.e., $n(A) = m$, then $n(P(A)) = 2^m$.

If $A = \emptyset$, then $n(A) = 0$

$\therefore n(P(A)) = 2^0 = 1$

Hence, $P(A)$ has one element.

#419705

Topic: Functions

Assume that $P(A) = P(B)$. Show that $A = B$

Solution

Let $P(A) = P(B)$

To show: $A = B$

Let $x \in A$

$A \in P(A) = P(B)$

$\therefore x \in C$ for some $C \in P(B)$

Now, $C \subseteq B$

$\therefore x \in B$

But x is an arbitrary element in A

$\therefore A \subseteq B$ ——(1)

Now, let $y \in B$

$B \in P(B) = P(A)$

$\Rightarrow y \in D$ for some $D \in P(A)$

$D \subseteq A$

$\Rightarrow y \in A$

But y is an arbitrary element in B.

Hence, $B \subseteq A$ ——(2)

From (1) and (2), we get

$A = B$

#419708

Topic: Functions

Is it true that for any sets A and B, $P(A) \cup P(B) = P(A \cup B)$? Justify your answer

Solution

False

Let $A = \{0, 1\}$ and $B = \{1, 2\}$

$\therefore A \cup B = \{0, 1, 2\}$

$P(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

$P(B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

$P(A) \cup P(B) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{2\}, \{1, 2\}\}$

$P(A \cup B) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{2\}, \{1, 2\}\}$

$\therefore P(A) \cup P(B) \neq P(A \cup B)$

#446760

Topic: Relations

Let R be the relation on Z defined by $R = \{(a, b) : a, b \in Z, a - b$ is an integer$\}$. Find the domain and range of R.

Solution
Given $R = \{(a, b); a, b \in Z, a - b \text{ is an integer}\}$

$a \in Z$ so, Domain of R is Z.

R is such that $a - b \in Z$ and we have $a \in Z$ so $b \in Z$.

So, Range of R is Z.

- Domain of $R = Z$ and Range of $R = Z$.

#458289

Topic: Relations

![Diagram](image)

The figure shows a relationship between the sets P and Q. Write this relation in:

(i) In set-builder form

(ii) Roster form

Solution

The relation mentioned in the figure shows, P as domain and Q as range.

Let the relation be R

In roster form $R = \{(5, 3), (6, 4), (7, 5)\}$

In set builder form $R = \{(x, y); x \in P, y \in Q, y = x - 2\}$

#459565

Topic: Special Functions

Find the maximum and minimum values, if any, of the following function given by:

$f(x) = |x + 2| - 1$

Solution

$f(x) = |x + 2| - 1$

Here, $|x + 2|$ is always greater than 0 (property of mod).

$|x + 2| \geq 0$

$\Rightarrow f(x) = |x + 2| - 1 \geq -1$

\Rightarrow function has a minimum value of -1 and this happens when $|x + 2| = 0$

i.e. $x = -2$

#459566

Topic: Special Functions

Find the maximum and minimum values, if any, of the following function given by:

$g(x) = -|x + 1| + 3$

Solution

$g(x) = -|x + 1| + 3$

As we know from property of mod that $|x + 1| \geq 0$

$\Rightarrow -|x + 1| \leq 0$ (When an inequality is multiplied from -1 then it get inverted)

$\Rightarrow -|x + 1| + 3 \leq 3$

$\Rightarrow g(x) \leq 3$

This shows that $g(x)$ will attain maximum value of 3 and that to when $-|x + 1| = 0$

i.e. $x = -1$
