#417855

Topic: Cartesian Product

If
$$\left(\frac{x}{3} + 1, y - \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$
 find the values of x and y

Solution

It is given that
$$\left(\frac{x}{3} + 1, y - \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$

Since the ordered pairs are equal the corresponding element will also be equal

Therefore
$$\frac{x}{3} + 1 = \frac{5}{3}$$
 and $y - \frac{2}{3} = \frac{1}{3}$

$$\Rightarrow v = 1$$

$$\Rightarrow \frac{x}{3} + 1 = \frac{5}{3}$$

$$\Rightarrow x = 2$$

$$\therefore x = 2 \text{ and } y = 1$$

#417856

Topic: Cartesian Product

If the set A has 3 elements and the set $B = \{3, 4, 5\}$ then find the number of elements in $(A \times B)$?

Solution

It is given that set \mathcal{A} has 3 elements and the elements of set \mathcal{B} are 3, 4 and 5

 \Rightarrow Number of elements in set B = 3

Number of elements in $(A \times B)$

= (Number of elements in A) \times (Number of elements in B)

= 3 × 3 = 9

Thus the number of elements in $(A \times B)$ is 9

#417864

Topic: Cartesian Product

If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.

Solution

$$G = \{7, 8\} \text{ and } H = \{5, 4, 2\}$$

We know that the Cartesian product of $P \times Q$ of two non-empty sets P and Q is defined as

 $P\times Q=\{(p,\,q)\colon p\in P,\,q\in\,Q\}$

$$\therefore \ G \times H = \{(7,\,5),\,(7,\,4),\,(7,\,2),\,(8,\,5),\,(8,\,4),\,(8,\,2)\}$$

and
$$H \times G = \{(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)\}$$

#417877

Topic: Cartesian Product

State whether each of the following statements are true or false. If the statement is false rewrite the given statement correctly

(i) If $P = \{m, n\}$ and $Q = \{n, m\}$ then $P \times Q = \{(m, n), (n, m)\}$

(ii) If A and B are non-empty sets then $A \times B$ is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$

(iii) If $A = \{1, 2\}$, $B = \{3, 4\}$ then $A \times (B \cap \phi) = \phi$

(i) Given $P = \{m, n\}$ and $Q = \{n, m\}$ then

 $P \times Q = \{(m, n), (m, m), (n, n), (n, m)\}$

So, given value of $P \times Q$ is incorrect.

Hence, the given statement (i) is false.

(ii) If A and B are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs (X, Y) such that $X \in A$ and $Y \in B$

Hence, the given statement (ii) is true.

(iii)
$$A = \{1, 2\}$$
 and $B = \{3, 4\}$

$$A \times (B \cap \phi) = A \times \phi = \phi$$

So, (iii) is true.

#417884

Topic: Cartesian Product

 $\label{eq:interpolation} \text{If } = \mathcal{A} \{\, -1, \, 1\} \text{ then find } \mathcal{A} \times \mathcal{A} \times \mathcal{A}.$

Solution

It is known that for any non-empty set \mathcal{A} , $\mathcal{A} \times \mathcal{A} \times \mathcal{A}$ is defined as

$$A\times A\times A=\{(a,\,b,\,c)\colon a,\,b,\,c\in A\}$$

It is given that $A = \{ -1, 1 \}$

$$A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (1, -1, -1), (1, -1, 1), (1, 1, 1)\}$$

#417885

Topic: Cartesian Product

If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$ Find A and B.

Solution

It is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$

We know that the Cartesian product of two non-empty sets P and Q is defined as

 $P \times Q = \{(p, q) : p \in P, q \in Q\}$

 \therefore A is the set of all first elements of $A \times B$ and B is the set of all second elements of $A \times B$

Thus $A = \{a, b\}$ and $B = \{x, y\}$

#417886

Topic: Cartesian Product

Let $\mathcal{A} = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\} \text{ and } D = \{5, 6, 7, 8\}$ Verify that

(i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii) $A \times C$ is a subset of $B \times D$

(i) To verify : $A \times (B \cap C) = (A \times B) \cap (A \times C)$

We have $B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \phi$

 \therefore L.H.S = $A \times (B \cap C) = A \times \phi = \phi$

 $A\times B=\{(1,1),\,(1,2),\,(1,3),\,(1,4),\,(2,1),\,(2,2),\,(2,3),\,(2,4)\}$

 $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$

 \therefore R. H. S. = $(A \times B) \cap (A \times C) = \phi$

 \therefore L. H. S = R. H. S

Hence $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii) To verify: $A \times C$ is a subset of $B \times D$

 $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$

 $B \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 6), (3, 7), (4, 8), (4,$

(3, 8), (4, 5), (4, 6), (4, 7), (4, 8)

We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$

Therefore $A \times C$ is a subset of $B \times D$

#417887

Topic: Cartesian Product

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$ and find how many subsets will $A \times B$ have? List them.

Solution

 $A = \{1, 2\}$ and $B = \{3, 4\}$

 $A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

 $\Rightarrow n(A \times B) = 4$

We know that if $n(A \times B) = r$

Then, number of subsets of $A \times B$ is 2^r

Therefore the set $A \times B$ has $2^4 = 16$ subsets.

These are

 $\{\phi, \{(1,3)\}, \{(1,4)\}, \{(2,3)\}, \{(2,4)\}, \{(1,3), (1,4)\}, \{(1,3), (2,3)\}, \{(1,3), (2,4)\},$

 $\{(1,4),(2,3)\},\{(1,4),(2,4)\},\{(2,3),(2,4)\},\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4),(2,4)\},\\$

 $\{(1,\,3),\,(2,\,3),\,(2,\,4)\},\,\{(1,\,4),\,(2,\,3),\,(2,\,4)\},\,\{(1,\,3),\,(1,\,4),\,(2,\,3),\,(2,\,4)\}\}$

#417889

Topic: Cartesian Product

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in $A \times B$ find A and B where x, y and z are distinct elements

Solution

It is given that n(A)=3 and n(B)=2 and (x,1),(y,2),(z,1) are in $A\times B$

We know that A = Set of first elements of the ordered pair elements of $A \times B$

B = Set of second elements of ordered pair elements of $A \times B$

 \therefore X, y and z are the elements of A and 1 and 2 are the elements of B

Since n(A) = 3 and n(B) = 2 it is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$

#417891

Topic: Cartesian Product

The cartesian product $A \times A$ has 9 elements among which are found (-1, 0) and (0, 1). Find the set A and the remaining elements of $A \times A$

We know that if n(A) = p and n(B) = q, then $n(A \times B) = n(A) \times n(B) = pq$

$$\therefore \ n(A \times A) = n(A) \times n(A)$$

It is given that $n(A \times A) = 9$

$$\therefore n(A) \times n(A) = 9$$

$$\Rightarrow n(A) = 3$$

The ordered pairs (– 1, 0) and (0, 1) are two of the nine elements of $\mathcal{A} \times \mathcal{A}$

Now, $A \times A = \{(a, a) : a \in A\}$

Therefore -1, 0 and 1 are elements of A

Since n(A) = 3, so set $A = \{ -1, 0, 1 \}$

The remaining elements of set $\mathcal{A} \times \mathcal{A}$ are (- 1, - 1), (- 1, 1), (0, - 1), (0, 0), (1, - 1), (1, 0) and (1, 1)

#417893

Topic: Relations

Let $A = \{1, 2, 3, \dots, 14\}$. Define a relation R from A to A by $R = \{(x, y): 3x - y = 0 \text{ where } x, y \in A\}$. Write down its domain, co-domain and range.

Solution

The relation R from A to A is given as

$$R = \{(x, y) : 3x - y = 0; x, y \in A\}$$

i.e.,
$$R = \{(x, y): \exists x = y, x, y \in A\}$$

$$\therefore$$
 R = {(1, 3), (2, 6), (3, 9), (4, 12)}

The domain of R is the set of all first elements of the ordered pairs in the relation

.. Domain of $R = \{1, 2, 3, 4\}$

The whole set A is the co-domain of the relation R

.. Codomain of $R = A = \{1, 2, 3, ..., 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of $R = \{3, 6, 9, 12\}$

#417896

Topic: Relations

Define a relation R on the set N of natural numbers by $R = \{(x, y) : y = x + 5, x \text{ is a natural number less than 4}; x, y \in N\}$. Depict this relationship using roster form. Write down the domain and the range.

Solution

Given definition of R is

 $R = \{(x, y): y = x + 5, x \text{ is a natural number less than } 4, x, y \in N\}$

The natural numbers less than 4 are 1, 2 and 3

 $\therefore R = \{(1, 6), (2, 7), (3, 8)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation

:. Domain of $R = \{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation

 \therefore Range of $R = \{6, 7, 8\}$

#417898

Topic: Relations

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$. Define a relation R from A to B by $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd } x \in A, y \in B\}$. Write R in roster form

Solution

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$

 $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd } x \in A, y \in B\}$

 $\therefore \ R = \{(1,4), (1,6), (2,9), (3,4), (3,6), (5,4), (5,6)\}$

#417901

Topic: Relations

Let $A = \{1, 2, 3, 4, 6\}$ and R be the relation on A defined by $\{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}$

- (i) Write R in roster form
- (ii) Find the domain of R
- (iii) Find the range of R

Solution

 $A = \{1, 2, 3, 4, 6\}$

 $R = \{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}$

 $(i) \ R = \{ (1,1), (1,2), (1,3), (1,4), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (6,6) \}$

(ii) Domain of $R = \{1, 2, 3, 4, 6\}$

(iii) Range of $R = \{1, 2, 3, 4, 6\}$

#417902

Topic: Relations

Determine the domain and range of the relation R defined by $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}$

Solution

 $R = \{(x, x+5) \colon x \in \{0, 1, 2, 3, 4, 5\}\}$

 $\Rightarrow R = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$

 \therefore Domain of $R = \{0, 1, 2, 3, 4, 5\}$

Range of $R = \{5, 6, 7, 8, 9, 10\}$

#417903

Topic: Relations

Write the relation $R = \{(x, x^3): x \text{ is a prime number less than 10}\}$ in roster form

Solution

 $R = \{(x, \chi^3) : x \text{ is a prime number less than 10}\}$

The prime numbers less than 10 are 2, 3, 5 and 7 $\,$

 $\therefore R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$

#417904

Topic: Relations

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations form A to B.

Solution

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$

 $\therefore \ \ A \times B = \{(x,1), (x,2), (y,1), (y,2), (z,1), (z,2)\}$

Since $n(A \times B) = 6$

The number of subsets of $A \times B$ is 2^6 .

#417905

Topic: Functions

Which of the following relations are functions? Give reasons.

If it is a function determine its domain and range

 $(i) \; \{(2,\,1),\,(5,\,1),\,(8,\,1),\,(11,\,1),\,(14,\,1),\,(17,\,1)\}$

 $\hbox{(ii) }\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$

(iii) {(1, 3), (1, 5), (2, 5)}

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

It is a function as every input has a single output.

So, 2, 5, 8, 11, 14 and 17 are the elements of the domain of the given relation.

Here domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$

 $\hbox{(ii) } \{(2,1),(4,2),(6,3),(8,4),(10,5)(12,6),(14,7)\} \\$

It is a function as every input has a single output.

So, 2, 4, 6, 8, 10, 12 and 14 are the elements of the domain of the given

relation.

6/1/2018

Here domain = $\{2, 4, 6, 8, 10, 12, 14\}$ and range = $\{1, 2, 3, 4, 5, 6, 7\}$

(iii) {(1, 3), (1, 5), (2, 5)}

Since the element 1 corresponds to two different images i.e., 3 and 5. So, this relation is not a function.

#417906

Topic: Functions

Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Solution

(i)
$$f(x) = -|x|, x \in R$$

We know that
$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

$$\therefore f(x) = -|x| \begin{cases} -x, & x \ge 0 \\ x, & x < 0 \end{cases}$$

Since, f(x) is defined for $x \in R$

Domain of f is R

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers

∴ The range of f is $(-\infty, 0]$

(ii)
$$f(x) = \sqrt{9 - x^2}$$

For this function to be defined,

$$9 - x^2 \ge 0$$

$$\Rightarrow$$
 $-3 \le x \le 3$

For any value of χ such that $-3 \le \chi \le 3$ the value of $f(\chi)$ will lie between 0 and 3

 \therefore The range of f is [0, 3]

#417907

Topic: Functions

A function f is defined by f(x) = 2x - 5. Write down the values of

(i) f(O)

(ii) *f*(7)

(iii) f(- 3)

Solution

f is given by f(x) = 2x - 5

Then, we have

(i)
$$f(0) = 2(0) - 5 = -5$$

(ii)
$$f(7) = 2(7) - 5 = 9$$

(iii)
$$f(-3) = 2(-3) - 5 = -11$$

#417908

Topic: Functions

The function t which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32^{\circ}$

Find:

(i) *t*(0 °)

(ii) t(28°)

(iii) t(- 10°)

(iv) The value of C when $t(C) = 212^{\circ}F$

Solution

The given function is

$$t(C) = \frac{9C}{5} + 32^{\circ}$$

(i)
$$t(0^{\circ}) = \frac{9 \times 0}{5} + 32^{\circ} = 0 + 32^{\circ} = 32^{\circ}F$$

(ii)
$$t(28^\circ) = \frac{9 \times 28^\circ}{5} + 32^\circ = \frac{252^\circ + 160^\circ}{5} = \frac{412^\circ}{5} = 82.4^\circ F$$

(iii)
$$t(-10^\circ) = \frac{9 \times (-10^\circ)}{5} + 32^\circ = 9 \times (-2^\circ) + 32^\circ = -18^\circ + 32^\circ = 14^\circ F$$

(iv) It is given that $t(C) = 212^{\circ}F$

$$\therefore 212^{\circ} = \frac{9C}{5} + 32^{\circ}$$

$$\Rightarrow \frac{9C}{5} = 212^{\circ} - 32^{\circ}$$

$$\Rightarrow \frac{9C}{5} = 180^{\circ}$$

$$\Rightarrow 9C = 180^{\circ} \times 5$$

$$\Rightarrow C = \frac{180^{\circ} \times 5}{9} = 100^{\circ}$$

Thus the value of Celsius temperature is $_{100}^{\,o}$ when Fahrenheit temperature is $_{212}^{\,o}$.

#417910

Topic: Functions

Find the range of each of the following functions

(i)
$$f(x) = 2 - 3x$$
, $x \in R$, $x > 0$

(ii)
$$f(x) = x^2 + 2$$
, x is a real number

(iii) f(x) = x, x is a real number

$$\Rightarrow 3x > 0$$

6/1/2018

$$\Rightarrow$$
 $-3x < 0$

$$\Rightarrow$$
 2 – 3 x < 2

$$\Rightarrow f(x) < 2$$

$$\therefore$$
 Range of $f = (-\infty, 2)$

(ii) Since, for any real number x, $x^2 \ge 0$

$$\Rightarrow \chi^2 + 2 \ge 0 + 2$$

$$\Rightarrow x^2 + 2 \ge 2$$

$$\Rightarrow f(x) \geq 2$$

$$\therefore$$
 Range of $f = [2, \infty)$

(iii) f(x) = x, x is a real number

It is clear that the range of f is the set of all real numbers

 \therefore Range of f = R

#417913

Topic: Functions

The relation *f* is defined by $f(x) = \begin{cases} x^2, 0 \le x \le 3 \\ 3x, 3 \le x \le 10 \end{cases}$

The relation g is defined by $g(x) = \begin{cases} x^2, 0 \le x \le 2\\ 3x, 2 \le x \le 10 \end{cases}$

Show that f is a function and g is not a function

Solution

The relation f is defined as $f(x) = \begin{cases} x^2, 0 \le x \le 3 \\ 3x, 3 \le x \le 10 \end{cases}$

It is observed that for

$$0 \le x \le 3$$
, $f(x) = x^2$

$$3 \le x \le 10, f(x) = 3x$$

Also at
$$x = 3$$
, $f(x) = 3^2 = 9$ or $f(x) = 3 \times 3 = 9$

i.e., at
$$x = 3$$
, $f(x) = 9$

Therefore for $0 \le x \le 10$, the images of f(x) are unique

Thus the given relation is a function

The relation g is defined as $g(x) = \begin{cases} x^2, 0 \le x \le 2\\ 3x, 2 \le x \le 10 \end{cases}$

It can be observed that for x = 2, $g(x) = 2^2 = 4$ and $g(x) = 3 \times 2 = 6$

Hence element 2 of the domain of the relation $\it g$ corresponds to two different images i.e., 4 and 6.

Hence, this relation is not a function.

#417914

Topic: Functions

If
$$f(x) = x^2$$
 find $\frac{f(1.1) - f(1)}{(1.1 - 1)}$

Solution

Given, $f(x) = x^2$

$$\therefore \frac{f(1.1) - f(1)}{(1.1 - 1)} = \frac{(1.1)^2 - (1)^2}{(1.1 - 1)} = \frac{1.21 - 1}{0.1} = \frac{0.21}{0.1} = 2.1$$

#417915

Topic: Functions

Find the domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$

Solution

The given function is,
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

$$\Rightarrow f(x) = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$$

It can be seen that function f is defined for all real numbers except at g = 6 and g = 2

Hence the domain of f is $R - \{2, 6\}$

#417917

Topic: Functions

Find the domain and the range of the real function f defined by $f(x) = \sqrt{(x-1)}$

Solution

The given real function is $f(x) = \sqrt{x-1}$

It can be seen that $\sqrt{x-1}$ is defined for $(x-1) \ge 0$

i.e.,
$$f(x) = \sqrt{(x-1)}$$
 is defined for $x \ge 1$

Therefore the domain of f is the set of all real numbers greater than or equal to 1 i.e.,

the domain of $f = [1, \infty)$

$$\Rightarrow$$
 $(x-1) \ge 0$

$$\Rightarrow \sqrt{x-1} \ge 0$$

$$f(x) \geq 0$$

Therefore the range of f is the set of all real numbers greater than or equal to 0

i.e., the range of $f = [0, \infty)$

#417918

Topic: Functions

Find the domain and range of the real function f defined by f(x) = |x - 1|

Solution

The given real function is f(x) = |x - 1|

It is clear that |x - 1| is defined for all real numbers

 \therefore Domain of f = R

Thus for $x \in R$, |x-1| assumes all non-negative real numbers.

Hence the range of f is the set of all non-negative real numbers= $(0, \infty)$

#417920

Topic: Functions

Let $f = \left(\frac{x^2}{1 + x^2} \right) : x \in \mathbb{R}$ be a function from R into R. Determine the range of f.

Let
$$y = \frac{x^2}{1 + x^2}$$

$$\Rightarrow v + x^2v = x^2$$

$$\Rightarrow y = \chi^2(1 - y)$$

$$\Rightarrow \chi^2 = \frac{y}{1 - y}$$

$$\Rightarrow x = \sqrt{\frac{y}{1 - y}}$$

Since, χ is real

$$\Rightarrow \frac{y}{1-y} \ge 0$$

$$\Rightarrow$$
 $y(1 - y) \ge 0$ and $(1 - y)^2 > 0$

$$\Rightarrow$$
 0 \leq $y \leq$ 1 and $-y > -1$

$$\Rightarrow$$
 0 \leq $y \leq$ 1 and $y <$ 1

Hence, $0 \le y < 1$

Range of f is [0, 1)

#417921

Topic: Algebra of Real Functions

Let $f, g: R \rightarrow R$ be defined respectively by f(x) = x + 1, g(x) = 2x - 3. Find f + g, f - g and $\frac{f}{g}$

Solution

 $f, g: R \rightarrow R$ is defined as

$$f(x)=x+1$$

$$g(x) = 2x - 3$$

Now,
$$(f+g)(x) = f(x) + g(x) = (x+1) + (2x-3) = 3x-2$$

$$\therefore (f+g)(x)=3x-2$$

Now,
$$(f-g)(x) = f(x) - g(x) = (x+1) - (2x-3) = x+1-2x+3 = -x+4$$

$$\therefore (f-g)(x) = -x + 4$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0, x \in R$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, 2x-3 \neq 0 \text{ or } 2x \neq 3$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, x \neq \frac{3}{2}$$

#417922

Topic: Functions

Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a function from Z to Z defined by f(x) = ax + b for some integers a, b. Determine a, b

 $f = \{(1,\,1),\,(2,\,3),\,(0,\,\,-1),\,(\,-1,\,\,-3)\}$

f(x) = ax + b

 $(1,1)\in f$

 $\Rightarrow f(1) = 1$

 $\Rightarrow a \times 1 + b = 1$

 $\Rightarrow a + b = 1$ (1)

 $(0, -1) \in f$

 $\Rightarrow f(0) = -1$

 $\Rightarrow a \times 0 + b = -1$

 $\Rightarrow b = -1$

On substituting b = -1 in eqn (1), we get

a + (-1) = 1

 $\Rightarrow a = 1 + 1 = 2$

Thus the respective values of a and b are 2 and -1

#417923

Topic: Relations

Let R be a relation from N to N defined by $R = \{(a, b): a, b \in N \text{ and } a = b^2\}$. Are the following true?

(i) $(a, a) \in R$ for all $a \in N$.

(ii) $(a, b) \in R$, implies $(b, a) \in R$.

(iii) $(a, b) \in R, (b, c) \in R \text{ implies } (a, c) \in R$

Justify your answer in each case

Solution

$$R = \{(a, b): a, b \in N; a = b^2\}$$

(i) It can be seen that $2 \in N$, however $2 \neq 2^2 = 4$

Therefore the statement $(a, a) \in R$ for all $a \in N$ is not true

(ii) It can be seen that $(9, 3) \in N$ because $9, 3 \in N$ and $9 = 3^2$

Now $3 \neq 9^2 = 81$

∴ (3,9) ∉ N

Therefore the statement $(a, b) \in R$ implies $(b, a) \in R$ is not true.

(iii) It can be seen that (9, 3) \in R, (16, 4) \in R because 9, 3, 16, 4 \in N and 9 = 3^2 and 16 = 4^2

Now $9 \neq 4^2 = 16$

 $\therefore (9,4) \not\in N$

Therefore the statement $(a, b) \in R$, $(b, c) \in R$ implies $(a, c) \in R$ is not true

#418034

Topic: Functions

Let $A = \{1, 2, 3, 4\}$, $B = \{1, 5, 9, 11, 15, 16\}$ and $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$ Are the following true?

(i) f is a relation from A to B

(ii) f is a function from A to B

Justify your answer in each case

 $A = \{1, 2, 3, 4\}$ and $B = \{1, 5, 9, 11, 15, 16\}$

 $A \times B = \{(1, 1), (1, 5), (1, 9), (1, 11), (1, 15), (1, 16), (2, 1), (2, 5), (2, 9), (2, 11), (2, 15), (2, 16)$

 $(3,1), (3,5), (3,9), (3,11), (3,15), (3,16), (4,1), (4,5), (4,9), (4,11), (4,15), (4,16) \}\\$

It is given that $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$

(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$

It is observed that f is a subset of $A \times B$

Thus f is a relation from A to B.

(ii) Since the element 2 corresponds to two different images i.e., 9 and 11. So, relation f is not a function

#418054

Topic: Functions

Let f be the subset of $Z \times Z$ defined by $f = \{(ab, a + b): a, b \in Z\}$. Is f a function from Z to Z: justify your answer Z to Z: Z is Z.

Solution

The relation f is defined as

$$f = \{(ab, a + b): a, b \in Z\}$$

We know that a relation f from set A to set B is said to be a function if every element of set A has unique images in set B.

Since $2, 6 \in \mathbb{Z}$

$$\Rightarrow (2\times 6, 2+6)\in f$$

Again since, -2, $-6 \in Z$

$$\Rightarrow (-2\times -6,\ -2+(-6))\in f$$

i.e.,
$$(12, 8)$$
, $(12, -8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8.

Thus relation f is not a function

#418064

Topic: Functions

Let $A = \{9, 10, 11, 12, 13\}$ and let $f: A \rightarrow N$ be defined by f(n) = 1 the highest prime factor of f. Find the range of f

Solution

 $A = \{9, 10, 11, 12, 13\}$

 $f: A \rightarrow N$ is defined as

f(n) = The highest prime factor of n

Prime factor of 9 = 3

Prime factors of 10 = 2, 5

Prime factors of 11 = 11

Prime factors of 12 = 2, 3

Prime factors of 13 = 13

 \therefore f(9) = The highest prime factor of 9 = 3

f(10) = The highest prime factor of 10 = 5

f(11) = The highest prime factor of 11 = 11

f(12) = The highest prime factor of 12 = 3

f(13) = The highest prime factor of 13 = 13

Thus range of f is the set of all f(n) where $n \in A$

is $= \{3, 5, 11, 13\}$

#418423

Topic: Functions

How many elements has P(A), if $A = \phi$?

Solution

We know that if A is a set with m elements i.e., n(A) = m, then $n[P(A)] = 2^m$.

If $A = \phi$, then n(A) = 0

:
$$n[P(A)] = 2^{o} = 1$$

Hence, P(A) has one element.

#419705

Topic: Functions

Assume that P(A) = P(B). Show that A = B

Solution

Let P(A) = P(B)

To show: A = B

Let $x \in A$

 $A\in P(A)=P(B)$

 $\therefore x \in C$, for some $C \in P(B)$

Now, $C \subset B$

∴ *x*∈*B*

But χ is an arbitrary element in A

 $\therefore A \subset B$ (1)

Now, let $y \in B$

 $B\in P(B)=P(A)$

 $\Rightarrow y \in D$ for some $D \in P(A)$

 $D \subset A$

 $\Rightarrow y \in A$

But y is an arbitrary element in B.

Hence, $B \subset A$ (2)

From (1) and (2), we get

A = B

#419708

Topic: Functions

Is it true that for any sets A and B, $P(A) \cup P(B) = P(A \cup B)$? Justify your answer

Solution

False

Let $A = \{0, 1\}$ and $B = \{1, 2\}$

 $\therefore A \cup B = \{0, 1, 2\}$

 $P(A) = \{\phi, \{0\}, \{1\}, \{0, 1\}\}$

 $P(B) = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$

 $P(A \cup B) = \{\phi, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 2\}, \{0, 1, 2\}\}$

 $P(A) \ \cup \ P(B) = \{\phi, \{0\}, \{1\}, \{0, 1\}, \{2\}, \{1, 2\}\}$

 $\therefore \ P(A) \cup P(B) \neq P(A \cup B)$

#446760

Topic: Relations

Let R be the relation on Z defined by $R = \{(a, b): a, b \in Z, a - b \text{ is an integer}\}$. Find the domain and range of R.

6/1/2018

Given $R = \{(a, b): a, b \in Z, a - b \text{ is an integer}\}$

 $a \in Z$ So, Domain of R is Z.

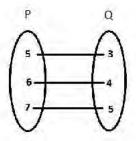
R is such that $a - b \in Z$ and we have $a \in Z$ so $b \in Z$.

So, Range of R is Z.

 \therefore Domain of R = Z and Range of R = Z.

#458289

Topic: Relations



The figure shows a relationship between the sets P and Q. Write this relation in

(i) in set-builder form (ii) roster form

Solution

The relation mentioned in the figure shows, Pa domain and Qa s range.

Let the relation be R

In roster form $R = \{(5, 3), (6, 4), (7, 5)\}$

In set builder form $R = \{(x, y): x \in P, y \in Q, y = x - 2\}$

#459565

Topic: Special Functions

Find the maximum and minimum values, if any of the following function given by:

$$f(x) = |x + 2| - 1$$

Solution

$$f(x) = |x + 2| - 1$$

Here, |x+2| is always greater than 0 (property of mod)

 $|x+2| \ge 0$

$$\Rightarrow f(x) = |x + 2| - 1 \ge -1$$

 \Rightarrow function has a minimum value of -1 and this happenes when |x+2| = 0

i.e. at $\chi = -2$

#459566

Topic: Special Functions

Find the maximum and minimum values, if any of the following function given by:

g(x) = -|x+1| + 3

Solution

$$g(x) = -|x+1| + 3$$

As we know from property of mod that $|x+1| \ge 0$

 $\Rightarrow -|x+1| \le 0$ (When an inequality is multiplied from -1 then it get inverted)

 \Rightarrow - | x + 1| + 3 \leq 3

 $\Rightarrow g(x) \leq 3$

This shows that g(x) will attain maximum value of 3 and that to when -|x+1|=0

i.e. at $\chi = -1$