\#637802

Classify the following as motion along a straight line, circular or oscillatory motion.
(i) Motion of your hands while running.
(ii) Motion of a horse pulling a cart on a straight road.
(iii) Motion of a child in a merry-go-round.
(iv) Motion of a child on a see-saw.
(v) Motion of a hammer of an electric bell.
(vi) Motion of a train on a straight bridge.

Solution
(i) Oscillatory motion
(ii) Linear motion
(iii) Circular motion
(iv) Oscillatory motion
(v) Oscillatory motion
(vi) Linear motion

\#637865

A simple pendulum takes 32 s to complete 20 oscillations, what is the time period of the pendulum?

Solution
Time taken to complete 20 oscillations $=32 \mathrm{~s}$

Time taken to complete 1 oscillation $=32 / 20 \mathrm{~s} 1.6 \mathrm{~s}$

Time period of a pendulum is time taken by it to complete 1 oscillation.

Time period of pendulum is 1.6 seconds.

\#637870

The distance between two stations is 240 km . A train takes 4 hours to cover this distance. Calculate the speed of the train.

Solution
Distance $=240 \mathrm{~km}$
Time taken $=4$ hours
Speed $=$ Distance covered $/$ time taken $=240 \mathrm{~km} / 4$ hammer
$=60 \mathrm{~km} / \mathrm{h}$
Speed of train $=60 \mathrm{~km} / \mathrm{h}$.

\#637879

The odometer of a car reads 57321.0 km when the clock shows the time $08: 30 \mathrm{AM}$. What is the distance moved by the car, if at $08: 50 \mathrm{AM}$, the odometer reading has changed to 57336.0 km ? Calculate the speed of the car in $\mathrm{km} / \mathrm{min}$ during this time. Express the speed in km / h also.

Solution

Distance $=57336.0 \mathrm{~km}-57321 \mathrm{~km}=15 \mathrm{~km}$
Speed in $\mathrm{km} / \mathrm{min}=15 \mathrm{~km} / 20 \mathrm{~min}=3 / 4 \mathrm{~km} / \mathrm{min}$
Speed in $k m / h r=15 k m / 1 / 3 h r$
$=(15 \times 3) k m / h r$
$=45 \mathrm{~km} / \mathrm{hr}$.

\#637881

Salma takes 15 minutes from her house to reach her school on a bicycle. If the bicycle has a speed of $2 \mathrm{~m} / \mathrm{min}$, calculate the distance between her house and the school.

Solution

Time taken $=15 \mathrm{~min}$
Speed $=2 \mathrm{~m} / \mathrm{min}$
Distance $=$ speed \times time $=2 \times 15=30 \mathrm{~m}$
Distance between Salma's school and her house is 30 m .

\#637918

Show the shape of the distance-time graph for the motion in the following cases
(i) A car moving with a constant speed.
(ii) A car parked on a side road.

Solution

\#637919

Which of the following relations is correct ?

A Speed=Distance Time

B Speed=Distance / Time

C Speed- Time / Distance
D Speed $=1$ /Distance Time

\#637920

The basic unit of speed is:

A $\mathrm{km} / \mathrm{min}$

B $\quad \mathrm{m} / \mathrm{min}$

C km / h
D m / s

\#637921

A car moves with a speed of $40 \mathrm{~km} / \mathrm{h}$ for 15 minutes and then with a speed of $60 \mathrm{~km} / \mathrm{h}$ for the next 15 minutes. The total distance covered by the car is:

Solution

Given data:
Speed,S1 is $40 \mathrm{~km} / \mathrm{hr}$
Speed,S2 is $60 \mathrm{~km} / \mathrm{hr}$
Time, T 1 is 15 minutes $-1 / 4 \mathrm{hr}$
Time,T2 is 15 minutes- $1 / 4 \mathrm{hr}$

To find:
Total distance covered

Solution:

Using $S I$ and $T 1$ in the equation Speed=Distance \times Time
\$\$D1 = (S1 \times T1)\$\$

$$
\begin{aligned}
& =40 * 1 / 4 \\
& =10 \mathrm{kms}
\end{aligned}
$$

Using S2 and T2 in the equation Speed=Distance *Time
$D 2=S 2 \times T 2$
$=60 \times \frac{1}{4}$
$=15 \mathrm{kms}$
Total kms covered $=D 1+D 2=10+15=25 \mathrm{kms}$.
\#637922

Figure 1 Vehicles moving in the same direction of on a road

Figure 2 Position of vehicles shown in Figure 1 after some time
 speed of the blue car.

Solution

From the figures, we conclude that the distance covered by blue car is 1 cm .

So, the distance covered $=100 \mathrm{~m}$
Time taken $=10$ seconds

Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{200}{10}=20 \mathrm{~m} / \mathrm{s}$

Figure shows the distance-time graph for the motion of two vehicles A and B. Which one of them is moving faster?

Solution
'A' is moving faster.

\#637924

Which of the following distance-time graphs shows a truck moving with speed which is not constant?
A

B

(ii)

C

D
 \#637925

Which of the following are not correct?
(i) The basic unit of time is second.
(ii) Every object moves with a constant speed.
(iii) Distances between two cities are measured in kilometers.
(iv) The time period of a given pendulum is not constant.
(v) The speed of a train is expressed in m / h.

Solution

We know that,

(i) The basic unit of time is second, second is the SI unit of time.
(ii) Every object may or may not moves with a constant speed. Some are accelerating also.
(iii) The Distance between two cities are measured in kilometers. it is big unit of distance
(iv) The time period of a given pendulum is always constant because it depends on the length of the pendulum.
(v) The speed of a train is measured in km / h and in m / s.

So, we can say that, (ii), (iv) and (v) are not correct statements.

Hence, This is the correct answer

