\#427766

Topic: Cuboid and Cube
If one side of a cube is 13 metres, find its volume.

Answer: 2197
Solution
Given, side of a cube 13 metres
The volume of a cube $=(\text { side })^{3}$
$=(13)^{3}$
$=2197 \mathrm{~m}^{3}$
\#463309
Topic: Rectangles and Squares

60 m
(a)

80 m
(b)

A square and a rectangular field with measurements as given in the figure have the same perimeter. Which field has larger area?

Solution
Let the side of square field be $a=60 \mathrm{~m}$
Let the length of rectangular field be $I=80 \mathrm{~m}$ and breadth be $b \mathrm{~m}$.
Perimeter of square $=$ Perimeter of rectangle
$4 \times a=2(/+b)$
$4 \times 60=2(80+b)$
$b=40$
Area of square $=60 \times 60=3600 \mathrm{~m}^{2}$
Area of rectangle $=80 \times 40=3200 \mathrm{~m}^{2}$

So, area of square is greater than area of rectangle.

\#463310

Topic: Rectangles and Squares

Mrs kaushik has a square plot with the measurement as shown in the figure. She wants to construct a house in the middle of the plot. A garden is developed around the house. Find the total cost of developing a garden around the house at the rate of Rs 55 per sq. metre.

Solution
Area of remaining portion $=$ Area of square plot - Area of house
$=(25 \times 25)-(15 \times 20)$
$=325$ sq. metre
Total cost $=$ Rs $(325 \times 55)=$ Rs 17,875
\#463318
Topic: Trapezium, Parallelogram and Rhombus

metre.

Solution

Area of one tile $=24 \times 10=240 \mathrm{~cm}^{2}$
Required no. of tiles $=\frac{\text { Total Area }}{\text { Area of one tile }}=\frac{1080 \times 10000}{240}=45000$ tiles
\#463320
Topic: Trapezium, Parallelogram and Rhombus

The shape of the top surface of a table is trapezium. Find its area if it's parallel sides are 1 m and 1.2 m and perpendicular distance between them is 0.8 m .

Solution
Area of trapezium
$=\frac{1}{2} \times$ Sum of Parallel Sides \times Distance between parallel sides
$=\frac{1}{2} \times(1+1.2) \times 0.8=0.88$ sq. metres

\#463321

Topic: Trapezium, Parallelogram and Rhombus
The area of the trapezium is 34 sq cm and the length of one of the parallel side is 10 cm and its height is 4 cm . Find the length of the parallel side

Solution

Area of Trapezium
$=\frac{1}{2} \times$ Sum of Parallel Sides \times Distance between parallel sides
$\Rightarrow 34=\frac{1}{2} \times(10+x) \times 4$
$\Rightarrow x=7$

Length of other parallel side of trapezium is 7 cm
\#463322
Topic: Trapezium, Parallelogram and Rhombus

Length of the fence of a trapezium shaped field $A B C D$ is 120 m . If $B C=48 \mathrm{~m}, C D=17 \mathrm{~m}$ and $A D=40 \mathrm{~m}$, find the area of this field.
Side $A B$ is perpendicular to the parallel sides $A D$ and $B C$.

Solution
Length of fence of trapezium $A B C D=A B+17+48+40$
$\Rightarrow 120=105+A B$
$\Rightarrow A B=15 \mathrm{~m}$
Area of trapezium
$=\frac{1}{2} \times$ Sum of Parallel sides \times Distance between Parallel sides
$=\frac{1}{2}[(40+48) \times 15]=660$ sq. metres

\#463583

Topic: Trapezium, Parallelogram and Rhombus

Mohan wants to buy a trapezium shaped field. Its sides along the river is parallel to and twice the sides along the road. If the area of this field is 10500 sq metre and the perpendicular distance between the two parallel sides is 100 m , find the length of the side along the river.

Solution

Area of trapezium $=\frac{1}{2} \times[(I+2) 100]=10500$
$\Rightarrow 3 I=210$
$\Rightarrow I=70 \mathrm{~m}$
Length of field along the road $=70 \mathrm{~m}$
Length of the field along the river $=2 \times 70=140 \mathrm{~m}$

Top surface of a raised platform is in the shape of a rectangular octagon as shown in the figure. Find the area of the octagon surface.

Solution
Area of rectangle $=11 \times 5=55$ sq. metre
Area of trapezium $=\frac{1}{2} \times 4 \times 16=32$ sq. metre
Total area $=2 \times 32+55=119$ sq. metre
\#463637
Topic: Polygons

Joyti's diagram

Kavita's diagram

There is a pentagonal shaped park as shown in figure. For finding its area jyoti and kavita divided it into two different ways. Find the area of the park using both the ways.

Solution
Jyoti's way
Area of pentagon $=2 \times \frac{1}{2} \times(15+30) \times \frac{15}{2}=337.5$ sq. metre
Kavita's way
Area of pentagon $=\left(\frac{1}{2} \times 15 \times 15\right)+(15 \times 15)=337.5$ sq. metre
\#463643
Topic: Trapezium, Parallelogram and Rhombus

Diagram of the adjacent picture frame has outer dimensions $=24 \mathrm{~cm} \times 28 \mathrm{~cm}$ and inner dimensions $16 \mathrm{~cm} \times 20 \mathrm{~cm}$. Find the area of each section of the frame, if the width of each section is same

Solution

$I B=B J=C K=C L=D M=D N=A O=A P$
$I L=I B+B C+C L$
$I B=C L=4 \mathrm{~cm}$
$I B=B J=C K=C L=D M=D N=A O=A P=4 \mathrm{~cm}$
Area of section $B E F C=$ Area of section $D G H A$
$=\left(\frac{1}{2} \times(20+28) \times 4\right)=96 \mathrm{sq} \mathrm{cm}$

\#463710

Topic: Cylinder
A closed cylindrical tank of radius 7 m and height 3 m is made from a sheet of metal. How much sheet of metal is required?

Solution
Given, radius $r=7 \mathrm{~m}$, height $=3 \mathrm{~m}$
We need to find total surface area of cylinder $=2 \pi r(r+h)$
$=2 \times \frac{22}{7} \times 7(7+3)=440$ sq meter
So, 440 sq m sheet of metal is required

\#463711

Topic: Cylinder

Solution
Area of cylinder $=$ area of rectangular sheet
$\Rightarrow 4224=33 \times 1$
$\Rightarrow I=128 \mathrm{~cm}$
Perimeter of rectangular sheet $=2[128+33]=322 \mathrm{~cm}$
\#463712
Topic: Cylinder

A road roller takes 750 complete revolutions to move once over to level a road. Find the area of the road if the diameter of a road roller is 84 cm and length is 1 m .

Solution

Area of road covered in 1 revolution $=2 \pi r /=2 \times \frac{22}{7} \times 42 \times 1=\frac{264}{100}$ sq m
Area of road covered in 750 revolution $=750 \times\left(\frac{264}{100}\right)=1980$ sq m
\#463714
Topic: Cylinder

Given a cylindrical tank, in which situation will you find surface area and in which situation volume.
(a) To find how much it can hold.
(b) Number of cement bags required to plaster it.
(c) To find the number of smaller tanks that can be filled with water from it.

Solution

(a) In this case, we will find the volume
(b) In this case, we will find the surface area
(c) In this case, we will find the volume.
\#463715
Topic: Cylinder

Diameter of cylinder A is 7 cm , and the height is 14 cm . Diameter of cylinder B is 14 cm and height is 7 cm . Without doing any calculations can you suggest whose volume is greater? Verify it by finding the volume of both the cylinders. Check whether the cylinder with greater volume also has greater surface area?

Solution

Volume of cylinder $A=\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 14\right)=539$ cubic cm
Volume of cylinder $B=\left(\frac{22}{7} \times 7 \times 7 \times 7\right)=1078$ cubic cm
volume of cylinder B is greater

Surface area of cylinder $A=\left(2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}+14\right)=385 \mathrm{sq} \mathrm{cm}$

Surface area of cylinder $B=\left(2 \times \frac{22}{7} \times 7 \times(7+7)\right)=616 \mathrm{sq} \mathrm{cm}$
Surface area of cylinder B is also greater than the surface area of cylinder A.
\#463718
Topic: Cylinder
Find the height of the cylinder whose volume is 1.54 m and diameter of the base is 140 cm ?

Solution

Radius of base of cylinder $=\frac{140}{2}=70 \mathrm{~cm}=0.70 \mathrm{~m}$
Volume of cylinder $=\frac{22}{7} \times 0.70 \times 0.70 \times h=1.54$
$\therefore h=\frac{(1.54 \times 100)}{(22 \times 7)} \mathrm{m}=1 \mathrm{~m}$
So, height of cylinder is 1 m
\#463719
Topic: Cylinder

A milk tank is in the form of cylinder whose radius is 1.5 m and length is 7 m . Find the quantity of milk in litres that can be stored in the tank?

Solution

Volume of cylinder $=\left(\frac{22}{7} \times 1.5 \times 1.5 \times 7\right)=49.5 \mathrm{cu} . \mathrm{m}$
Required quantity $=49.5 \times 1000=49500 /$
\#463745
Topic: Rectangles and Squares
In a stack there are 5 books each of thickness 20 mm and 5 paper sheets each of thickness 0.016 mm . What is the total thickness of the stack?

Solution

Thickness of 5 books $=5 \times 20=100 \mathrm{~mm}$
Thickness of 5 paper sheets $=5 \times 0.016=0.080 \mathrm{~mm}$
Total thickness of stack $=100+0.080=100.08 \mathrm{~mm}$

$$
=1.0008 \times 10^{2}
$$

\#464114

Topic: Cuboid and Cube
A plastic box 1.5 m long, 1.25 m wide and 65 cm deep is to be made. It is opened at the top. Ignoring the thickness of the plastic sheet,
(i) determine the area of the sheet
(ii) the cost of sheet for it, if a sheet measuring $1 \mathrm{~m}^{2}$ costs Rs. 20 .

Solution

Length of box $=1.5 \mathrm{~m}$, Breadth $=1.25 \mathrm{~m}$, Height $=0.65 \mathrm{~m}$
(i) Area of sheet requred $=2 l h+2 b h+l b$ [Box is open]
$=[2 \times 1.5 \times 0.65+2 \times 1.25 \times 0.65+1.5 \times 1.25] \mathrm{m}^{2}$
$=(1.95+1.625+1.875) m^{2}=5.45 \mathrm{~m}^{2}$
ii) Cost of sheet per m^{2} area $=$ Rs. 20

Cost of sheet of $5.45 m^{2}$ area $=$ Rs. 5.45×20
$=$ Rs. 109

\#464116

Topic: Cuboid and Cube
The length, breadth and height of a room are $5 \mathrm{~m}, 4 \mathrm{~m}$ and 3 m respectively. Find the cost of white washing the walls of the room and the ceiling at the rate of 7.50 per m^{2}.

Solution
$L=5 \mathrm{~m}, B=4 \mathrm{~m}, H=3 \mathrm{~m}$
Area to be white washed $=$ Area of walls + Area of ceiling of room.
$=2 l h+2 b h+l b$
$=[2 \times 5 \times 3+2 \times 4 \times 3+5 \times 4] m^{2}$
$=74 m^{2}$
Cost of white washing per m^{2} area $=$ Rs. 7.50
Cost of white washing $74 m^{2}$ area $=74 \times 7.50$
$=$ Rs. 555
\#464117
Topic: Cuboid and Cube
The floor of a rectangular hall has a perimeter 250 m . If the cost of painting the four walls at the rate of 10 per m^{2} is 15000 , find the height of the hall (in meters).

Solution
Area of 4 walls $=2 h h+2 b h$
$=2(b+1) h$
Perimeter of floor of wall $=21+2 b$
$2(I+b)=250 \mathrm{~m}$
\therefore Area of 4 walls $=2(/+b) h$
$=250 h \mathrm{~m}^{2}$
Cost of painting per m^{2} area $=$ Rs. 10
Cost of painting $250 h \mathrm{~m}^{2}$ area $=\operatorname{Rs}(250 h \times 10)$
$=$ Rs. $2500 h$
Painting cost of walls $=$ Rs. 15000
$2500 h=15000$
$h=\frac{15000}{2500}$
$h=6 m$

\#464123

Topic: Cuboid and Cube
A small indoor greenhouse (herbarium) is made entirely of glass panes (including base) held together with tape. It is 30 cm long, 25 cm wide and 25 cm high.
(i) What is the area of the glass?
(ii) How much of tape is needed for all the 12 edges?

Solution

(i) Total S.A of green house $=2(l b+b h+l b)$
$2(30 \times 25+30 \times 25+25 \times 25)$
$=4250 \mathrm{~cm}^{2}$
(ii) For 12 edges: Total length $=4 \times I+4 b+4 h$
$4(30+25+25)$
$=320 \mathrm{~cm}$

\#464175

Topic: Cuboid and Cube
A match box measures $4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$. What will be the volume of a packet containing 12 such boxes?

Solution
$I=4, b=2.5, h=1.5$
$V=l \times b \times h$
$=4 \times 2.5 \times 1.5 \mathrm{~cm}^{2}$
$=15 \mathrm{~cm}^{3}$
Volume of 12 matchboxes $=12 \times 15 \mathrm{~cm}^{3}$
$=180 \mathrm{~cm}^{3}$

\#464177

Topic: Cuboid and Cube
A cuboidal water tank is 6 m long, 5 m wide and 4.5 m deep. How many litres of water can it hold?

Solution

Volume of tank $=f \times b \times h$
$I=6 \mathrm{~m}, b=5 \mathrm{~m}, h=4.5 \mathrm{~m}$
$V=6.5 \times 5 \times 4.5=135 m^{3}$
Amount of water hold by $1 \mathrm{~m}^{3}$ volume $=1000$ /
Amount of water hold by $135 \mathrm{~m}^{3}$ volume $=135 \times 1000$
$=135000 /$

\#464178

Topic: Cuboid and Cube
A cuboidal vessel in 10 m long and 8 m wide. How high must it be made to hold 380 cubic metres of a liquid?

Solution

$I-10 m, b=81 m$
Let height of a cuboidal vessel be h
$V=l \times b \times h=10 \times 8 \times h$
$=380 \mathrm{~m}^{3}$
$h=\overline{380} m^{3}=4.755^{\mathrm{m}^{3}}$

\#464180

Topic: Cuboid and Cube
Find the cost of digging a cuboidal pit 8 m long, 6 m broad and 3 m deep at the rate of 30 per m^{3}.

Solution
$I=8 \mathrm{~m}, b=6 \mathrm{~m}, h=3 \mathrm{~m}$
Volume $=l \times b \times h=(8 \times 6 \times 2) m^{3}=144 m^{3}$
Cost of digging per m^{3} volume $=$ Rs. 30
Cost of digging per $144 \mathrm{~m}^{3}$ volume $=$ Rs $.144 \times 30$
= Rs. 4320

\#464182

Topic: Cuboid and Cube
The capacity of a cuboidal tank is 50000 litres of water. Find the breadth of the tank, if its length and depth are respecrively 2.5 m and 10 m

Solution
Let $\operatorname{breadth}(b)=x \mathrm{~m}$
$l=2.5 \mathrm{~m}, h=10 \mathrm{~m}$
$V=l \times b \times h=(2.5 \times x \times 10) \mathrm{m}^{3}$
$=25 \times \mathrm{m}^{3}$
Capacity of a tank $=25 x m^{3}=50000$ litres
$\Rightarrow 25 x m^{3}=50 m^{3}$
$\Rightarrow x=2$
Hence, $b=2 m$.

\#464183

Topic: Cuboid and Cube
 last?

Solution
Capacity of tank $=I \times b \times h=(20 \times 15 \times 6) \mathrm{m}^{3}$
$=1800 \mathrm{~m}^{3}$
$=1800000$ litre
Consumption of water in 1 day $=4000 \times 150$ litres
$=600000$ litres
Water of this tank will last for $=\frac{1800000}{600000}$
$=3$ days

\#464184

Topic: Cuboid and Cube
A godown measures $40 \mathrm{~m} \times 25 \mathrm{~m} \times 15 \mathrm{~m}$. Find the maximum of wooden crates each measuring $1.5 \mathrm{~m} \times 1.25 \mathrm{~m} \times 0.5$ that can be stored in the godown.

Solution

Volume of godown $=l \times b \times h=40 \times 25 \times 10 m^{3}$
$=15000 \mathrm{~m}^{3}$
Volume of 1 wooden crate $=1.5 \times 1.25 \times 0.5$
$=0.9375 \mathrm{~m}^{3}$
No. of wooden crate stored in godown
$=\frac{10000}{0.93750} \times 10000$
$=16000$
$\therefore 16000$ crates can be proved
\#464187
Topic: Cylinder
The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm . How many litres of water can it hold?

Solution
Let radius $=x$
Given, $h=25 \mathrm{~cm}$, Circumference $=132 \mathrm{~cm}$
$2 \pi r=132$
132×7
$r=\overline{2 \times 22}$
$r=21 \mathrm{~cm}$
Volume $=\pi_{r} r^{2} h=\frac{22}{7} \times(21)^{2} \times 25$
$=34650 \mathrm{~cm}^{2}$
$=34.65$ litres

\#464190

Topic: Cylinder
A soft drink is available in two packs-
(i) a tin can with a rectangular base of length 5 cm and width 4 cm , having a height of 15 cm
(ii) a plastic cylinder with circular base of diameter 7 cm and height 10 cm .

Which container has greater capacity and by how much?

Solution
Length $=5 \mathrm{~cm}$ [Tin can]
Breadth $=4 \mathrm{~cm}$
Height $=15 \mathrm{~cm}$
Capacity volume $=l \times b \times h=5 \times 4 \times 15$
$=300 \mathrm{~cm}^{3}$
Radius of cylinder $\begin{gathered}7 \\ = \\ 2\end{gathered}=3.5 \mathrm{~cm}, \mathrm{H}=10 \mathrm{~cm}$
Capacity $=\pi R^{2} H=\left(\frac{22}{7} \times(3.5)^{2} \times 10\right) \mathrm{cm}^{3}$
Cylinder has more capacity by $=(385-300) \mathrm{cm}^{3}$
$=85 \mathrm{~cm}^{3}$

\#464192

Topic: Cylinder
If the lateral surface a cylinder is $94.2 \mathrm{~cm}^{2}$ and its height is 5 cm , then find
(i) radius of its base and
(ii) its volume

Solution

Given, $h=5 \mathrm{~cm}$
Let radius $=r$
(i) Curved Surface Area $=94.2 \mathrm{~cm}^{2}=2 \pi r h$
$94.2 \mathrm{~cm}^{2}=2 \times 3.14 \times r \times 5 \mathrm{~cm}$
$r=3 \mathrm{~cm}$
(ii) Volume of cylinder $=\pi r^{2} h=3.14 \times 3 \times 3 \times 5$
$=141.2 \mathrm{~cm}^{3}$
\#464193
Topic: Cylinder
If costs 2200 to paint the inner curved surface of a cylindrical vessel 10 m deep. If the cost of painting is at the rate of 20 per $m 2$, find
(i) inner curved surface area of the vessel,
(ii) radius of the base and
(iii) capacity of the vessel.

Solution

(i) Cost of painting 1 m 2 area $=$ Rs. 20

Rs. 20 is cost painting $1 \mathrm{~m}^{2}$ area
Rs. 2200 is cost of painting $=\frac{2200}{20} \mathrm{~m}^{2}$
$=110 \mathrm{~m} 2$ area
(ii) Let radius $=r_{1}, h=10 \mathrm{~m}, \mathrm{SA}=2 \pi r h=110$
$r=\frac{110 \times 7}{22 \times 2 \times 10}=\frac{7}{4}=1.75^{\mathrm{m}}$
(iii) Volume of vessel $=\pi r^{2} h=\frac{22}{7} \times 1.75 \times 1.75 \times 10$
$=96.25 \mathrm{~m}^{3}$
96250 litres

\#464195

Topic: Cylinder
The capacity of a closed cylindrical vessel of height 1 m is 15.4 litres. How many square metres of metal sheet would be needed to make it?

Solution
Given, $h=1 \mathrm{~m}, V=15.4 /=0.0154 \mathrm{~m}^{3}$
Let radius $=r$
$0.0154=\pi r^{2} h=\overline{7}_{7}^{22} \times r^{2} \times 1, r=0.07 \mathrm{~m}$
Total Surface Area $=2 \pi r^{2}+2 \pi r h$
$=2 \times 227 \times 0.07(0.07 H)$
$=0.44 \times 1.074 \mathrm{~m}^{2}$
$=0.4708 \mathrm{~m} 2$

\#464196

Topic: Cylinder
 the length of the pencil is 14 cm , find the volume of the wood and that of the graphite.

Solution

Radius of pencil $=\frac{7}{-} \quad m m=3.5{ }^{7} \mathrm{~mm}$
$0.35 \mathrm{~cm}=r_{p}$
$h=14 \mathrm{~cm}$, radius of graphite $=\begin{aligned} & 1 \\ & =-\mathrm{mm} \\ & 2\end{aligned}$
$=0.05 \mathrm{~cm}$
Volume of wood in pencil $=\pi\left(r_{p}^{2}-r_{g}^{2}\right) h$
22
$\overline{7}\left[(0.35)^{2}-(0.05)^{2 \times 14]}\right.$
22
$=\overline{7}_{7}(0.1225-0.0025) \times 14$
$=44 \times 0.12=5.28 \mathrm{~cm}^{3}$
Volume of a graphite $=\pi r_{g}^{2} h$
$=\overline{7}_{7}^{22} \times(0.05)^{2} \times 14^{\mathrm{cm} 3}$
$=44 \times 0.0025 \mathrm{~cm}^{3}$
$=0.11 \mathrm{~cm}^{3}$
\#464197
Topic: Cylinder
 daily to serve 250 patients.

Solution
Radius $=\frac{7}{2}=3.5^{\mathrm{cm}}$, height of bowl $=4 \mathrm{~cm}$ (soup land)
Volume of soup $=\pi r^{2} h$
22
$=\frac{-}{7} \times 3.5 \times 3.5 \times 4$
$=154 \mathrm{~cm}^{3}$
Volume of soup given to 250 patients $=250 \times 154$
$=38500 \mathrm{~cm}^{3}$
38500
$=\overline{1000}$ I
$=38.5 /$

\#464200

Topic: Cylinder
Find the volume of the right circular cone with
(i) radius 6 cm , height 7 cm .
(ii) radius 3.5 cm , height 12 cm

Solution
() radius $=6 \mathrm{~cm}, h=7 \mathrm{~cm}$

Volume $=\frac{1}{-} \pi_{r^{2} h}=\frac{1}{3} \times \frac{22}{7} \times 6 \times 6 \times 7$
$=44 \times 6=264 \mathrm{~cm}^{3}$
(ii) $r=3.5 \mathrm{~cm}, h=12$

Vol $=\frac{1}{-} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 12$
$=154 \mathrm{~cm}^{3}$
\#464203
Topic: Cylinder
Find the capacity in litres of a conical vessel with
(i) radius 7 cm , slant height 25 cm .
(ii) height 12 cm , slant height 13 cm .

Solution
(i) $r=7, ;=25 \mathrm{~cm}, h=\sqrt{1^{2}-r^{2}}$
$=\sqrt{25^{2}-7^{2}}=\sqrt{576}$
$h=24$
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 7 \times 24$
$=154 \times 8=1232 \mathrm{~cm}^{3}$
$=1.232$ litres
(ii) $h=12 \mathrm{~cm}, l=13 \mathrm{~cm}, r=\sqrt{P^{2}-h^{2}}$
$\sqrt{13^{2}-12^{2}}=\sqrt{25}=5$
$\mathrm{Vol}=\frac{1}{-} \pi{ }_{3}^{2} h=\frac{1}{3}=\frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times 12$
$=\frac{2200}{7} \mathrm{~cm}_{3}=\frac{2200}{7 \times 1000}$ litres
$=\frac{11}{35}$ litres

\#465243

Topic: Circles and Ring

In Fig., $O A C B$ is a quadrant of a circle with centre O and radius 3.5 cm . If $O D=2 \mathrm{~cm}$, find the area of the
(i) quadrant $O A C B$, (ii) Shaded region

Solution

(i)

Area of quadrant $O A C B=\frac{\text { Area of Circle }}{4}=\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5=9.625 \mathrm{~cm}^{2}$
(ii)

Area of shaded region $=$ Area of Quadrant - Area of $\triangle B D O$
$=9.625-\left(\frac{1}{2} \times 3.5 \times 2\right)$
$=6.125 \mathrm{~cm}^{2}$
\#470524
Topic: Circles and Ring

Fig. depicts an archery target marked with its five scoring regions from the centre outwards as Gold, Red, Blue, Black and White. The diameter of the region representing Gold score is 21 cm and each of the other bands is 10.5 cm wide. Find the area of each of the five scoring regions

Solution

Gold region

$d_{1}=2 r_{1}=21 \mathrm{~cm}$

$$
\therefore r_{1}=\frac{21}{2} \mathrm{~cm}
$$

$$
A_{1}=\pi r_{1}^{2}=\pi\left(\frac{21}{2}\right)^{2}=\frac{441 \pi}{4} c m^{2}
$$

$\mathrm{A}($ Gold region $)=346.5 \mathrm{~cm}^{2}$

Red region

$r_{2}=r_{1}+10.5=\frac{21}{2}+\frac{21}{2}=21 \mathrm{~cm}$
$A_{2}=\pi r_{2}{ }^{2}=\pi(21)^{2}=1386 \mathrm{~cm}^{2}$
$\mathrm{A}($ Red region $)=A_{2}-A_{1}=1039.5 \mathrm{~cm}^{2}$

Blue region

$r_{3}=r_{2}+10.5=21+\frac{21}{2}=\frac{63}{2} \mathrm{~cm}$
$A_{3}=\pi r_{3}^{2}=\pi\left(\frac{63}{2}\right)^{2}=3118.5 \mathrm{~cm}^{2}$
$\mathrm{A}($ Blue region $)=A_{3}-A_{2}=1732.5 \mathrm{~cm}^{2}$

Black region

$r_{4}=r_{3}+10.5=\frac{63}{2}+\frac{21}{2}=42 \mathrm{~cm}$
$A_{4}=\pi r_{4}{ }^{2}=\pi(42)^{2}=5544 c^{2}$
$\mathrm{A}($ Black region $)=A_{4}-A_{3}=2425.5 \mathrm{~cm}^{2}$

White region

$r_{5}=r_{4}+10.5=42+\frac{21}{2}=\frac{105}{2} \mathrm{~cm}$
$A_{5}=\pi r_{5}^{2}=\pi\left(\frac{105}{2}\right)^{2}=8662.5 \mathrm{~cm}^{2}$
$\mathrm{A}($ White region $)=A_{5}-A_{4}=3118.5 \mathrm{~cm}^{2}$

\#470525

Topic: Circles and Ring

Solution

Diameter of wheel $(D)=80 \mathrm{~cm}$
Radius $(r)=\frac{80}{2}=40 \mathrm{~cm}$.

1 complete revolution of wheel = Circumference of wheel (C)
$C=2 \pi r=2 \pi \times 40=80 \pi \mathrm{~cm}$
$C=0.8 \pi \mathrm{~m}$

Speed of the car $=66 \mathrm{~km} / \mathrm{hr} .=\frac{66 \times 1000}{60} \mathrm{~m} / \mathrm{min}$.
\therefore Speed of the car $=1100 \mathrm{~m} / \mathrm{min}$.

Therefore, in 10 min ., the car will travel a distance of $1100 \times 10=11000 \mathrm{~m}$

No. of revolutions of wheel $=\frac{11000}{0.8 \pi}=\frac{11000 \times 7}{0.8 \times 22}=4375$

Each wheel of the car makes 4375 complete revolutions in 10 min

Topic: Cuboid and Cube
The volume of a cube is 512 cubic metres. Find the length of the side of the cube.

Answer: 8
Solution
Given, volume of cube $=512$ cu. m
We know that, the volume of a cube (side) ${ }^{3}$
$=\sqrt[3]{512}$
$=\sqrt[3]{2 \times 2 \times 2}$
$=2 \times 2 \times 2=8 \mathrm{~m}$
\#463207
Topic: Cuboid and Cube
Is a square prism same as a cube? Explain.

Solution

A square prism is a cube. A prism is "a solid geometrical figure whose two end faces are similar, equal, and parallel rectilinear figures and whose sides are parallelograms".

In the case of a cube, all sides are similar therefore it fits the definition of a square prism.

\#463323

Topic: Quadrilateral

The diagonal of a quadrilateral shaped field is 24 m and the perpendiculars dropped on it from the remaining opposite vertices are 8 m and 13 m . Find the area of the field.

Solution
Area of the field
$=$ Area of upper triangle + Area of Lower triangle
$=\frac{1}{2} \times 13 \times 24+\frac{1}{2} \times 8 \times 24$
$=156+96=252$ sq m

\#463324

Topic: Trapezium, Parallelogram and Rhombus
The diagonals of a rhombus are 7.5 cm and 12 cm . Find its area.

Solution

Area of rhombus
$=\frac{1}{2} \times$ Product of Diagonals
$=\frac{1}{2} \times(7.5 \times 12)$
$=45 \mathrm{sq} \mathrm{m}$

\#463325

Topic: Trapezium, Parallelogram and Rhombus
Find the area of a rhombus whose side is 5 cm and whose altitude is 4.8 cm . If one of its diagonal is 8 cm long, find the length of the other diagonal.

Solution

Area of rhombus $=$ Base \times Height $=\frac{1}{2} \times$ Product of diagonals
$\Rightarrow 5 \times 4.8=\frac{1}{2} \times(8 \times x)$
$\Rightarrow 24=\frac{1}{2} \times(8 \times x)$
$\Rightarrow x=6 \mathrm{~cm}$

\#463326

Topic: Trapezium, Parallelogram and Rhombus
 cost per sq. metre is Rs 4

Solution
Area of each tile $=\frac{1}{2} \times 45 \times 30=675$ sq. cm

Area of 3000 tiles $=675 \times 3000=202.5$ sq metre

Total cost $=$ Rs $[202.5 \times 4]=$ Rs 810

\#463651

Topic: Cuboid and Cube

(a)

There are two cuboidal boxes as shown in the adjoining figure. Which box requires the lesser amount of material to make?

Solution

Total surface area of cuboid	$=[2 \times(60 \times 40)+(40 \times 50)+(50 \times 60)]$
	$=14800 \mathrm{sq} \mathrm{cm}$
total surface area of cube $=$	$6 \times 50=15000 \mathrm{sq} \mathrm{cm}$

So, the cuboidal box will require lesser amount of material.

\#463656

Topic: Cuboid and Cube

Solution

T.S.A $=2[(80 \times 48)+(48 \times 24)+(24 \times 80)]=13824 \mathrm{sq} \mathrm{cm}$
T.S.A of 100 suitcases $=13824 \times 100=1382400$ sq cm

Length of tarpaulin $=\frac{1382400}{96}=14400 \mathrm{~cm}=144 \mathrm{~m}$

\#463701

Topic: Cuboid and Cube
Find the side of a cube whose surface area is 600 sq. cm

Solution

Surface area $=600$ sq.cm
$\Rightarrow 6 \%^{2}=600$
$\Rightarrow I=10 \mathrm{~cm}$

Side of cube $=10 \mathrm{~cm}$

\#463703

Topic: Cuboid and Cube

Rukhsar painted the outside of the cabinet of measure $1 m \times 2 m \times 1.5 m$. How much surface area did she cover if she painted all except the bottom of the cabinet?

Solution

A cabinet has 6 surfaces including bottom surface.
However, we have to paint only 5 surfaces.
So, we have one front and one back surface (2×1.5),
one left and one right surface (1×1.5) and one upper surface (2×1).

So, area to be painted is
$=(2 \times(2 \times 1.5))+(2 \times(1 \times 1.5))+(2 \times 1)$
$=11 \mathrm{sq} . \mathrm{m}$

\#463704

Topic: Cuboid and Cube

painted. How many cans of paint will she need to paint the room?

Solution

Area to be painted $=$ area of the walls + area of ceiling
$=[2 \times 7 \times(15+10)+(15 \times 10)]=500$ sq m
No. of cans required $=\frac{500}{100}=5$
\#463708
Topic: Cylinder

Describe how the two figures at the right are alike and how they are different. Which box has larger lateral surface area?

Solution

Both the figures have same heights.
Lateral surface area of cube $=4 \times 7 \times 7=196 \mathrm{sq} \mathrm{cm}$
lateral surface area of cylinder $=2 \times \frac{22}{7} \times \frac{7}{2} \times 7=154$ sq cm
So, cube has larger surface area.
\#463713
Topic: Cylinder

A company packages its milk powder in cylindrical container whose base has a diameter of 14 cm and height 20 cm . Company places a label around the surface of the container (as shown in the figure). If the label is placed 2 cm from top and bottom, what is the area of the label.

Solution
Height of the label $=20-2-2=16 \mathrm{~cm}$
Radius $=\frac{d}{2}=\frac{14}{2}=7 \mathrm{~cm}$
Area of the label $=2 \pi r h=2 \times \frac{22}{7} \times 7 \times 16=704 \mathrm{sq} \mathrm{cm}$

\#463716

Topic: Cuboid and Cube
Find the height of a cuboid whose base area is $180 \mathrm{sq} . \mathrm{cm}$ and volume is $900 \mathrm{cu} . \mathrm{cm}$?

Solution
Area $=\rho \times b=180$
Volume of cuboid $=l \times b \times h=900$
$\Rightarrow 180 \times h=900$
$\Rightarrow h=\frac{900}{180}=5 \mathrm{~cm}$

\#463717

Topic: Cuboid and Cube

A cuboid is of dimensions $60 \mathrm{~cm} \times 54 \mathrm{~cm} \times 30 \mathrm{~cm}$. How many small cubes with side 6 cm can be placed in the given cuboid?

Solution

Volume of cuboid $=60 \times 54 \times 30=97200 \mathrm{cu} . \mathrm{cm}$
Volume of a cube $=6 \times 6 \times 6=216 \mathrm{cu} . \mathrm{cm}$
Required no. of cubes $=\frac{97200}{216}=450$

\#463720

Topic: Cuboid and Cube
If each edge of a cube is doubled,
(i) how many times will its surface area increase?
(ii) how many times will its volume increase?

Solution

(i) Initial surface area $=6 \times 1 \times 1$

New surface area $=6 \times(2 \times 1) \times(2 \times 1)=4 \times$ initial surface area.
So, the new surface area will be increased by 4 times.
(ii) Intial volume $=|\times|\times|$

Final volume $=(2) \times(2) \times(2)=8 \times$ initial volume
So, volume of the cube will be increased by 8 times.
\#463721
Topic: Cuboid and Cube

Water is pouring into a cubiodal reservoir at the rate of 60 litres per minute. If the volume of reservoir is 108 m , find the number of hours it will take to fill the reservoir.

Solution

Volume of cuboidal reservoir $=108 \times 1000=108000 /$
Required number of hours $=\left(\frac{108000}{3600}\right)=30$ hours
So, it will take 30 hrs to fill the resevoir

\#464118

Topic: Cuboid and Cube
The paint in a certain is sufficient to paint an area equal to $9.375 \mathrm{~m}^{2}$. How many bricks of dimensions $22.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 7.5 \mathrm{~cm}$ can be painted out of this container?

Solution

Total surface of cuboid (brick) $=2(l b+b h+l h)$
$2(22.5 \times 10+10 \times 7.5+22.5 \times 7.5) \mathrm{cm}^{2}$
$=2 \times 468.75=937.5 \mathrm{~cm}^{2}$
Area that can be painted by part of container $=9.375 \mathrm{~m}^{2}$
Let x number of bricks will be used.
Area $=937.5 \times x \mathrm{~cm}^{2}$
937.5
$10 x$
$x=100$

\#464120

Topic: Cuboid and Cube
A cubical box has each edge 10 cm and another cuboidal box is 12.5 cm long, 10 cm wide and 8 cm high.
(i) Which box has the greater lateral surface area and by how much?
(ii) Which box has the smaller total surface area and by how much?

Solution
($)$ Lateral surface area of cube $=4(\text { edge })^{2}$
$=4(10)^{2}=400 \mathrm{~cm}^{2}$
Lateral surface area of cuboidal box $=2(/ h+b h)$
$2(12.5 \times 8+10 \times 8)$
$=2 \times 180=360 \mathrm{~cm} 2$
\therefore Lateral surface area of cubical box > Lateral surface area of cuboidal box
\Rightarrow Difference: $400-360$ cm²
$=40 \mathrm{~cm}^{2}$
(ii) Total surface area of cubical box $=6(\text { edge })^{2}$
$=(6)^{2}=300 \mathrm{~cm}^{2}$
Total surface area of cuboidal box $=2(l b+b h+l h)$
$2(12.5 \times 100+10 \times 8+12.5 \times 8)$
$=610 \mathrm{~cm}^{2}$
Total S.A of cuboidal box < cuboidal total S.A

Difference $=610-600 \mathrm{~cm}^{2}=10 \mathrm{~cm}^{2}$

\#464125

Topic: Cuboid and Cube

 cost of cardboard required for supplying 250 boxes of each kind.

Solution

Total S.A of bigger box $=2(l b+b h+I h)$
$2(25 \times 20+25 \times 5+20 \times 5) \mathrm{cm}^{2}$
$2(500+125+100)$
$1450 \mathrm{~cm}^{2}$
For overlapping extra area required $=\frac{450 \times 5}{100}=72.5^{\mathrm{cm}^{2}}$
\therefore Total S.A (including overlaps)
$=1450+72.5=1522.5 \mathrm{~cm}^{2}$
Area of cardboard sheet for 250 such boxes
$=(1522.5 \times 250) \mathrm{cm}^{2}$
Total S.A of smaller box $=2(15 \times 12+15 \times 5+12 \times 5) \mathrm{cm}^{2}$
$=630 \mathrm{~cm} 2$
For overlapping area required $=\frac{630 \times 5}{100}=31.5^{\mathrm{cm}^{2}}$
Total S.A (including overlaps) $=630+31.5=661.5 \mathrm{~cm}^{2}$
Area of cardboard sheet required for 250 such boxes
$=250 \times 661.5 \mathrm{~cm}^{2}=165375 \mathrm{~cm}^{2}$
Total cardboard sheet required $=380625+165375$
$=54000 \mathrm{~cm}^{2}$
Cost of 1000 cm 2 cardboard sheet $=$ Rs. 4
Cost of 546000 cm 2 cardboard sheet $=R s . \frac{546000 \times 4}{1000}$
$=$ Rs. 2184

\#464127

Topic: Cuboid and Cube

 2.5 m , with base dimensions $4 \mathrm{~m} \times 3 \mathrm{~m}$?

Solution
Area of trapaulin required $=2(l b+b h)+l b$ [because it will be required for top and four sides shelter]
$=[2(4 \times 2.5+3 \times 2.5)+4 \times 3]^{2}$
$=[2(10+7.5)+12]$
$=47 \mathrm{~m}^{2}$

\#464128

Topic: Cylinder
The curved surface area of a right circular cylinder of height 14 cm is $88 \mathrm{~cm}^{2}$. Find the diameter of the base of the cylinder.

Solution

Height $=14 \mathrm{~cm}$
To calculate: diameter.
Let x be the diameter
Curved surface Area $=88$ cm²
$2 \pi r h=88$
$2 r=x, \pi r h=88$
88×7
$x=\overline{22 \times 14}$
$x=2 \mathrm{~cm}$
Diameter $=2 \mathrm{~cm}$
\#464129
Topic: Cylinder
It is required to make a closed circular cylindrical tank of height 1 m and base diameter 140 cm from a metal sheet. How many square metres of the sheet are required for the same?

Solution
Height $=1 \mathrm{~m}$, radius $=\frac{140}{2}=70 \mathrm{~cm}=0.7 \mathrm{~m}$
Area of sheet required = Total surface area of tank
$=2 \pi r^{2}+2 \pi r h$
22
$=2 \times \overline{7} \times 0.7(1.7) m^{2}$
$=7.48 \mathrm{~m}^{2}$
\#464131
Topic: Cylinder

A metal pipe is 77 cm long. The inner diameter of a cross section is 4 cm , the outer diameter being 4.4 cm (see figure). Find its
(i) inner curved surface area.
(ii) outer curved surface area
(iii) total surface area

Solution

```
Inner radius \(=\frac{4}{-}=2^{\mathrm{cm}}=r_{1}\)
Outer radius \(=\frac{4.4}{2}=2.2^{\mathrm{cm}=r_{2}}\)
Height \(=77 \mathrm{~cm}\)
(i) Curved S.A \(=2 \pi r_{1} h\) (inner)
\(=2 \times \frac{22}{7} \times 2 \times 77=968^{\mathrm{cm} 2}\)
(ii) Curved S.A (outer) \(=2 \pi r_{2} h\)
\(=\left(2 \times \frac{22}{7} \times 2.2 \times 77\right) \mathrm{cm}^{2}=(22 \times 22 \times 2.2)^{\mathrm{cm}^{2}}\)
\(=1064.8 \mathrm{~cm}^{2}\)
(iii) Total S.A of pipe \(=\) CSA of inner surface + CSA of outer surface + Area of circural base and top
\(\left.=968+1064.8+2 \pi(2.2)^{2}-2 \pi(2)^{2}\right)\)
\(=2032.8+5.28 \mathrm{~cm}^{2}\)
\(=2038.08 \mathrm{~cm}{ }^{2}\)
```

\#464134
Topic: Cylinder
The diameter of a roller is 84 cm and its length is 120 cm . It takes 500 complete revolutions to move once over to level a playground. Find the area of the playground in m^{2}

Solution

```
Height \(=120 \mathrm{~cm}, R=\frac{84}{2}=42 \mathrm{~cm}\)
CSA \(=2 \pi r h=2 \times \frac{22}{7} \times 42 \times 120 \mathrm{~cm}^{2}=31680 \mathrm{~cm}^{2}\)
Area \(=500 \times\) CSA
\(500 \times 31680 \mathrm{~cm}^{2}\)
\(=15480000 \mathrm{~cm}^{2}=\frac{15840000}{10000} \mathrm{~m}^{2}=1548 \mathrm{~m}^{2}\)
```

\#464135
Topic: Cylinder
A cylindrical pillar is 50 cm in diameter and 3.5 m in height. Find the cost of painting the curved surface of the pillar at the rate of 12.50 per m^{2}.

Solution

$$
\begin{aligned}
& H=3.5 \mathrm{~m}, R=\frac{50}{2}=25^{\mathrm{cm}}=\frac{25}{100}=0.25^{\mathrm{m}} \\
& \mathrm{CSA}_{=2} 2 \pi r h=\left(2 \times \frac{22}{7} \times \frac{0.25}{100} \times \frac{3.5}{10}\right)^{\mathrm{m}^{2}} \\
& =44 \times \frac{125}{1000} \mathrm{~m} 2=5.5 \mathrm{~m} 2 \\
& \text { Cost of painting } 1 \mathrm{~m} 2 \text { area }=\text { Rs. } 12.50 \\
& \text { Cost of painting } 5.5 \mathrm{~m} 2 \text { area }=\text { Rs. } 5.5 \times 12.50 \\
& =\text { Rs. } 68.75
\end{aligned}
$$

\#464136

Topic: Cylinder

Curved surface area of a right circular cylinder is 4.4 m 2 . If the radius of the base of the cylinder is 0.7 m , find its height.

Solution
Lets assume height be x
$R=0.7 \mathrm{~m}$
$\mathrm{CSA}=4.4 \mathrm{~m}^{2}, 2 \pi r h=4.4 \mathrm{~m}^{2}, 2 \pi 0.7 x=4.4$
$x=\frac{4.4 \times 7 \times 10}{2 \times 22 \times 7 \times 10}=1^{m}$
Height $=1 \mathrm{~m}$

\#464138

Topic: Cylinder

The inner diameter of a circular well is 3.5 m . It is 10 m deep. Find
($)$ its inner curved surface area
(ii) the cost of plastering the curved surface at the rate of 40 per m^{2}

Solution

(i) $r=$ radius,$h=$ depth of the well.

Curved surface area $=2 \pi r h$

$$
=(2 \times 227 \times 3.52 \times 10) m^{2}=110 m^{2}
$$

(ii) Cost of plastering $=\operatorname{Rs} 40$ per m^{2}

The cost of plastering the curved surface $=\operatorname{Rs}(110 \times 40)=\operatorname{Rs} 4400$.

\#464140

Topic: Cylinder
In a hot water heating system, there is a cylindrical pipe of length 28 m and diameter 5 cm . Find the total radiating surface in the system

Solution
$H=28 \mathrm{~cm},{ }_{R}^{-}=2.5^{\mathrm{Em}}=0.025 \mathrm{~m}(\overline{100})$
CSA of pipe (cylindrical) $=2 \pi r h$
$=2 \times \frac{22}{7} \times 0.025 \times 2.8^{m 2}$
$=4.4 \mathrm{~m}^{2}$
\#464141
Topic: Cylinder
Find
(i) The lateral or curved surface area of a closed cylindrical petrol storage tank that is 4.2 m in diameter and 4.5 m high.
(ii) How much steel was actually used, if $\frac{1}{-}$ of the steel actually used was wasted in making the tank.

$$
2
$$

Solution
$H=4.5 \mathrm{~m}$
$R=\frac{4.2}{2}=2.1 \mathrm{~m}$
(i) Lateral or CSA of tank $=2 \pi r h$
$=2 \times \frac{22}{7} \times 2.1 \times 4.5^{m^{2}}$
$=44 \times 0.3 \times 6.6 \mathrm{~m}^{2}$
$59.4 \mathrm{~m}^{2}$
(ii) Area used in making tank $=\frac{87.12}{1-\frac{1}{12}}$
$=\frac{87.12}{11} \times 12$
$=95.04 \mathrm{~m}^{2}$
\#464142
Topic: Cylinder

In the figure, you see the frame of a lampside. It is to be covered with a decorative cloth. The frame has a base diameter of 20 cm and height of 30 cm . A margin of 2.5 cm is to be given for folding it over the top and bottom of the frame. Find how much cloth is required for covering the lampshade.

Solution
$H=2.5+30+2.5=35 \mathrm{~cm}$ (It includes margin)
$R=\frac{20}{10}=10{ }^{\mathrm{cm}}$
Cloth required $=2 \pi r h(C S A)$
$=\left(2 \times \frac{22}{7} \times 10 \times 35\right)^{\mathrm{cm}}{ }^{2}$
$=2200 \mathrm{~cm}^{2}$

\#464144

Topic: Cylinder
 penholder was to be of radius 3 cm and height 10.5 cm . The Vidyalaya was to supply the competitors with cardboard. If there were 35 competitors, how much cardboard was required to be bought for the competition?

Solution

$R=3 \mathrm{~cm}, H=10.5 \mathrm{~cm}$
Surface area $=$ Curved Surface Area + Base Area
$=2 \pi r h+\pi r^{2}$
$=2 \times \frac{22}{7} \times 3 \times \frac{10.5}{10}+\frac{22}{7} \times 3 \times 3^{\mathrm{cm}^{2}}$
198
$=198+\frac{198}{7} \mathrm{~cm}^{2}$
1584
$=-{ }_{7} \mathrm{~cm}^{2}$
Area of cardboard sheet used by competitor $=\frac{1584}{7} \mathrm{~cm}^{2}$
Area of cardboard sheet used by 35 competitors $=\frac{1584}{7} \times 35$
$=7920 \mathrm{~cm}^{2}$
\#464174
Topic: Cylinder

A right circular cylinder just encloses a sphere of radius r (see figure). Find the
(i) surface area of the sphere,
(ii) curved surface area of the cylinder and (iii) ratio of the surfaces obtained in (i) and (ii).

Solution

(i) SA of sphere $=4 \pi r^{2}$
(ii) Height $=r+r=2 r$
radius $=r$
Curved Surface Area $=2 \pi r h=2 \pi r(2 r)=4 \pi r^{2}$
(iii) Ratio $=\frac{4 \pi r^{2}}{4 \pi r^{2}}=\stackrel{1}{-}$ or $1: 1$

\#464185

Topic: Cuboid and Cube
A solid cube of side 12 cm is cut into eight cubes of equal volume. What will be the side of the new cube? Also, find the ratio between their surface areas.

Solution

Side 12 cm
Volume of cube $=12 \times 12 \times 12=1728 \mathrm{~cm}^{3}$
Volume of smaller cube $=\begin{aligned} & \frac{1}{8}\end{aligned}$ of 1728
$=\frac{1}{8} \times 1728=216^{\mathrm{cm} 3}$

Let side be S.
$\therefore(S)^{3}=216$
$S=6 \mathrm{~cm}$

Ratio of SA of cubes $=\frac{\text { SA of bigger cube }}{\text { SA of smaller cube }}$
$=\left(\frac{12}{6}\right)^{2}=\frac{2^{2}}{1}=\frac{4}{1}$
\therefore Ratio between their surface areas 4:1

\#464186

Topic: Cuboid and Cube
A river 3 m deep and 40 m wide is flowing at the rate of 2 km per hour. How much water will fall into the sea in a minute?

Solution

Ratio of flow of water $=2 \mathrm{~km} /$ hour
$=(\overline{2000})^{\mathrm{m} / \mathrm{min}}$
$h=3 m$
$b=40 \mathrm{~m}$
Volume of water flowed in 1 min $=\frac{2000}{60} \times 40 \times 3$
$=4000 \mathrm{~m}^{3}$
\#464249
Topic: Cuboid and Cube

A wooden bookshelf has external dimensions as follows:

 bookshelf.

Solution

External length $=85 \mathrm{~cm}$
External breadth $=25 \mathrm{~cm}$
External height $=110 \mathrm{~cm}$
External SA $=l h+2(l b)+2 b h$
$=85 \times 110+2(85 \times 25+25 \times 110)$
$=(9350+9750) \mathrm{cm}^{2}$
$=19100 \mathrm{~cm}^{2}$
Area to be polished $=19100+2600=21700 \mathrm{~cm}^{2}$
Cost of polishing $1 \mathrm{~cm}^{2}$ area 0.20 Rs
Cost of polishing $21700 \mathrm{~cm}^{2}$ area $=21700 \times 0.20$
= Rs. 4340
Now, area to be painted in 3 rows $=3 \times$ area to be painted in 1 row
$=3 \times[2(I+b) b+l h]$
$=3[2(75+30) \times 20+30 \times 75]$
$=3[4200+2250]=19350 \mathrm{~cm}^{2}$
Cost of painting $1 \mathrm{~cm}^{2}$ area $=0.10 \mathrm{Rs}$
Cost of painting 19350 area $=$ Rs. 1935
Total cost $=1935+4340$
$=$ Rs. 6275

\#464914

Topic: Cuboid and Cube
Parikshit makes a cuboid of plasticine of sides $5 \mathrm{~cm}, 2 \mathrm{~cm}$ and 5 cm . How much such cuboids will he need to form a cube?

Solution
Volume of cube $=2 \times 5 \times 5$
$2 \times 5 \times 5$ is not a perfect cube, to make it perfect we will have to multiply it with ($2 \times 2 \times 5$)
$2 \times 2 \times 5=20$
So, 20 cuboids are required to form a cube.

\#465241

Topic: Circles and Ring

On a square handkerchief, nine circular designs each of radius 7 cm are made. Find the area of the remaining portion of the handkercheif

Solution
\square AJLE $=\square E L M F=\square F M N G=\square G N O H=\square H O P I=\square I P K B$, are all squares
Also, $A E=E F=F G=G H=H I=I B=$ radius of circles $=7 \mathrm{~cm}$
$\therefore A B=A E+E F+F G+G H+H I+I B=42 \mathrm{~cm}$
\therefore Area of $\square A B C D=42 \times 42$

$$
=1764 \mathrm{~cm}^{2}
$$

Area of 9 circles $=9 \times \frac{22}{7} \times 7 \times 7$

$$
=1386 \mathrm{~cm}^{2}
$$

\therefore Area of remaining portion of the handkerchief $=1764-1386=378 \mathrm{~cm}^{2}$

\#470522
Topic: Circles and Ring
The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has circumference equal to the sum of the circumferences of the two circles.

Solution

Let r_{1} and C_{1} be the radius and circumference, respectively of 1 st circle and r_{2} and C_{2} be the radius and circumference, respectively of 2 nd circle.
Let r_{3} and C_{3} be the radius and circumference, respectively of required circle.
$r_{1}=19 \mathrm{~cm}$
...Given
$C_{1}=2 \pi r_{1}$
$\therefore C_{1}=2 \pi \times 19=38 \pi \mathrm{~cm} \quad \ldots(1)$

$$
r_{2}=9 \mathrm{~cm} \quad \text {...Given }
$$

$C_{2}=2 \pi r_{2}$
$\therefore C_{2}=2 \pi \times 9=18 \pi \mathrm{~cm} \quad \ldots$ (2)
$C_{3}=C_{1}+C_{2} \quad$....Given
$\therefore C_{3}=38 \pi+18 \pi \quad$...From (1) and (2)
$C_{3}=56 \pi \mathrm{~cm}$.
$2 \pi r_{3}=56 \pi$
$r_{3}=28 \mathrm{~cm}$

The radius of the required circle is 28 cm .

\#470523
 Topic: Circles and Ring

The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the areas of the two circles

Solution

Let r_{1} and A_{1} be the radius and area, respectively of 1 st circle and r_{2} and A_{2} be the radius and area, respectively of 2 nd circle
Let r_{3} and A_{3} be the radius and area, respectively of required circle.
$r_{1}=8 \mathrm{~cm} \quad .$. Given
$A_{1}=\pi r_{1}{ }^{2}$
$\therefore A_{1}=\pi \times 8^{2}=64 \pi \mathrm{~cm}^{2} \quad$..(1)
$r_{2}=6 \mathrm{~cm} \quad$...Given
$A_{2}=\pi r_{2}{ }^{2}$
$\therefore A_{2}=\pi \times 6^{2}=36 \pi \mathrm{~cm}^{2}$
$A_{3}=A_{1}+A_{2}$
....Given
$\therefore A_{3}=64 \pi+36 \pi \quad \ldots$. From (1) and (2)
$A_{3}=100 \pi \mathrm{~cm}^{2}$
$\pi r_{3}{ }^{2}=100 \pi$
$r_{3}=10 \mathrm{~cm}$

The radius of the required circle is 10 cm .

\#470526

Topic: Circles and Ring
If the perimeter and the area of a circle are numerically equal, then the radius of the circle is

A 2 units

B $\quad \pi$ units

C 4 units

D 7 units

Solution

Let r be the radius, C be the circumference and A be the area of the circle
Perimeter of circle $=$ Circumference of circle
Circumference of circle $=$ Area of circleGiven
$\therefore 2 \pi r=\pi r^{2}$
$\Rightarrow r=2$ units

