SOLUTION - PART I
solution : Homogeneous mixture of two or mor substanes
(1) toppr

$$
\begin{aligned} & \text { Solution : Homogeneous mixture of two or more substance } \\ & \text { Solute } \end{aligned}
$$ Solute Solute Solvent

 Solvent}
which gets dissolves and is present in the Present in larger quantity, state of solution smaller quantity Which gets dissolved and is determined by it

Types of Solution
Type of Solvent

Type of Solvent	
Aqueous	Non-Aqueous
Solvent Is water	Solvent Is other

Concentrated

Large amounts of solute in the ints of solvent.

Dilute

 Small amount of amount of solvent Super saturatedUnsaturated
Can dissolve more
solute
 Solute

				Amount of solute in two solutions
Hypotonic Lower concentration of solute	Isotonic	Hypertonic		
	Same concentration	Higher concentration of solute		

Expressing the concentration of Solutions	
Method of Expressing	Formula
Mass percentage	$\left[\frac{w}{W}\right] \%=\frac{w_{2}}{w_{1}+w_{2}} \times 100$
Volume percentage	$\left[\frac{V}{V}\right] \%=\frac{V_{2}}{V_{1}+V_{2}} \times 100$
Mass by Volume percentage	$\left[\frac{\mathbf{W}}{\boldsymbol{V}}\right] \%=\frac{\mathbf{W}_{\mathbf{2}}}{\boldsymbol{V}_{\text {solution(in } \mathrm{I})}} \times 100$
Parts per million(ppm)	$\frac{w_{2}}{\left(w_{1}+w_{2}\right)} \times 10^{6}$
Molarity, (M) ($\mathrm{mol} \mathrm{L}^{-1}$)	$\frac{W_{2} \times 1000}{\left.M_{2} \times V_{\text {solution(in } m \text { l }}\right)}$
Molality, (m) ($\mathrm{mol} \mathrm{kg}^{-1}$)	$\frac{w_{2} \times 1000}{M_{2} \times w_{1(\mathrm{ing})}}$
Mole fraction, (x)	$\begin{aligned} & x_{1}=\frac{n_{1}}{n_{1}+n_{2}} \text { or } x_{2}=\frac{n_{1}}{n_{1}+n_{2}}, \\ & \left(x_{1}+x_{2}=1\right) \end{aligned}$ In case of gases only, $y_{1}=\frac{P_{1}}{P_{1}+P_{2}} \text { or } y_{2}=\frac{P_{1}}{P_{1}+P_{2}},$
	$\left(y_{1}+y_{2}=1\right)$

Solution Solubility of a gas in a liquid

- Many gases like oxygen are soluble in liquids like water

Solute + Solvent \rightleftharpoons Solution

- Dissolution of gas is predominantly is predominantly solubility de hence solubility decreases
 with rise in temperature Temperature As gases are completely compressible , their solubility increases with increase in pressure

Pressure
ed by the vapo
apor of the liquid over the surface of the liquid.
Vapour pressure of liquid solutions : Pressure formed by the vapor of the liquid
over the surface of the liquid.

Liquid-Liquid solutions (Components 1 and 2 both are volatile)	Solid-Liquid solutions (Component 1 is volatile)
$\begin{aligned} P_{1}= & P_{1}+P_{2} \\ P_{\text {total }} & =x_{1} P_{1}^{0}+x_{2} P_{2}^{0} \\ & =\left(1-x_{2}\right) P_{1}^{0}+x_{2} P_{2}^{0} \\ & =P_{1}^{0}+\left(P_{2}^{0}-P_{1}^{0}\right) x_{2} \end{aligned}$	$\begin{aligned} & P_{1} \propto x_{1} \\ & P_{1}=P_{1}^{0} x_{1} \end{aligned}$

- Polar solutes dissolve in polar solvents and non polar solutes in non-polar solvents. Solute + Solvent \rightleftharpoons Solution	- Many gases like oxygen are soluble in liquids like water Solute + Solvent \rightleftharpoons Solution
- If endothermic the • if exothermic the solubility increases solubility should with rise in decrease with rise temperature in temperature	- Dissolution of gas is predominantly exothermic hence solubility decreases
- Solids are incompressible hence pressure has no effect on solubility	- As gases are completely compressible, their solubility increases with increase in pressure

- Obey Raoult's law over the entire range of concentration
- $\Delta_{\text {mix }} H=0$
- $\Delta_{\text {mix }} V=0$

$A-A$ and $B-B$ interactions are equal to $A-B$ interactions

Relative Lowering of Vapour Pressure

$\Delta p_{1}=p_{1}^{0}-p_{1} \quad$ Mole Fraction of water
$\frac{\Delta p_{1}}{p_{1}^{0}}=\frac{p_{1}^{0}-p_{1}}{p_{1}^{0}}=x_{2}$
$\frac{p_{1}^{0}-p_{1}}{p_{1}^{0}}=\frac{w_{2} \times M_{1}}{M_{2} \times w_{1}}$

- Do not obey Raoult's law over the entire range of concentration
Negative deviation Positive deviation

$$
\begin{array}{ll}
\cdot \Delta_{\text {mix }} \mathrm{H}=-\mathrm{ve} & \cdot \Delta_{\text {mix }} \mathrm{H}=+\mathrm{ve} \\
\cdot \Delta_{\text {mix }} \mathrm{V}=-\mathrm{ve} & \cdot \Delta_{\text {mix }} \mathrm{V}=+\mathrm{ve}
\end{array}
$$

- A-B interactions are • A-B interactions are stronger than those weaker than those between A-A or B-B between A-A or B-B

Elevation of Boiling Point

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{b}} \times 1000 \times \mathrm{w}_{2}}{\mathrm{M}_{2} \times \mathrm{w}_{1}} \quad \text { Boiling point of }
\end{aligned}
$$

$$
\text { Temperature } / \mathrm{K} \longrightarrow
$$

Colligative Properties depend on the number and not nature of solute particles

Depression of Freezing Point

$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}} \mathrm{m}$
$\Delta T_{f}=\frac{K_{f} \times W_{2} \times 1000}{M_{2} \times W_{1}}$
1.013 bar or 1 Atm

Osmosis and Osmotic Pressure

- Solvent molecules always flow from lower concentration to higher concentration of solution
- The pressure that just stops the flow of solvent is called osmotic pressure of the solution.

$$
\pi=C R T
$$

$$
\pi V=\frac{W_{2} R T}{M_{2}}
$$

$$
\text { or } M_{2}=\frac{w_{2} R T}{J V}
$$

Abnormal molar mass is the experimentally determined molar mass

Association

- The experimentally determined molar mass is half than the true value

$$
\mathrm{KCl}=\mathrm{K}^{+}+\mathrm{Cl}^{-}
$$

Dissociation

- The molar mass calculated will be twice the expected value.

- Van't Hoff introduced a factor i, known as the Van't Hoff factor, to account for the extent of dissociation or association.

i	$=\frac{\text { Normal molar mass }}{\text { Abnormal molar mass }}$
	$=\frac{\text { Observed colligative property }}{\text { Calculated colligative property }}$
i	$=\frac{\text { Total number of moles of particles after association/ dissociation }}{\text { Number of moles of particles before association/ dissociation }}$

Relative lowering of vapour pressure of solvent

$$
\frac{p_{1}^{0}-p_{1}}{p_{1}^{0}}=i \cdot \frac{n_{2}}{n_{1}}
$$

Elevation of Boiling point, $\Delta \mathrm{T}_{\mathrm{b}}=i \mathrm{~K}_{\mathrm{b}} \mathrm{m}$ Depression of Freezing point, $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}$ Osmotic pressure of solution, $J=\mathrm{in}_{2} \mathrm{RT} / \mathrm{V}$

