Mechanical Properties of Fluid

Stoke's Law

Backward dragging force on a spherical body,

$$F = 6\pi\eta rv$$

Poiseuille's Formula

Flow rate

$$Q = \frac{\pi P r^4}{8\eta I}$$

Basic Results on Viscosity

Fluids in

motion

Properties of

Fluids

Reynold's Number

Determines nature of fluid flow

$$R = \frac{\rho vd}{\eta}$$

Viscocity

Coefficient of viscosity:-

$$n = \frac{F}{A(-\frac{dv}{dx})}$$

Where $\left(-\frac{dv}{dx}\right)$ is the velocity gradient between two layers of liquid.

Bernoulli's Theorem

For the streamline flow of an ideal liquid, the total energy per unit volume remains constant.

$$P+\rho gh+\frac{1}{2}\rho v^2=Constant$$

Pressure

Pascal's Law: The preassure is same at all point inside the liquid lying at the same depth in a horizontal plane.

Guage pressure:

P-Po=hpg

Archimedes' Principle

When a body is immersed fully or partly in a liquid at rest, it loses some of it's weight, which is equal to the weight of the liquid displaced by the immersed part of the body.

Apparent weight = $mg(1 - \frac{\rho}{\rho})$ (for fully immersed body)

Surface Tension

The property by which the free surface of liquid at rest tends to have minimum surface area.

Surface energy: Work done against the force of surface tension in forming the liquid surface

Fluids at

rest

Capillarity

The pheomenon of rise or fall of liguid in a capillary tube is called capillarity.

Height of the liquid within capillary tube.

$$h = \frac{2s \cos\Theta}{a\rho g}$$

Excess pressure

In an air bubble

$$\Delta P = \frac{2s}{R}$$

Inside a soap bubble

$$\Delta P = \frac{4s}{R}$$

Inside a liquid drop

$$\Delta P = \frac{2s}{R}$$