### Sets - Part I

#### Set

- 1 Any well defined collection of objects.
- 2 Set are usually denoted by capital letters.
- 3 Elements of set are usually represented by small letters. 4 If a is an element of set A, then it is represented as a  $\in$  A
- 5 If a is not an element of set A, then it is represented a £ A

### **Representation of Sets**

**1 Roster Form :** Set is represented by listing its element in braces { } and they are separated by comma. For e.g.  $A = \{ a, e, i, o, u \}, B = \{ 1, 2, 3, 4 \}$ 

Set - Builder Form: Set is represented by using statements depicting relation among its elements.

For e.g.  $A = \{x : x \text{ is a vowel in English alphabetic series} \}$  $B = \{x : x \text{ is a natural number less than 5}\}$ 

## **Types of Sets**

- **1** Empty or null or void set: It contains no elements For e.g  $A = \{ \}$
- 2 Finite set: It contains countable number of elements For e.g  $A = \{1, 4, 9, 16\}$
- 3 Infinite set: It contains uncountable number of elements For e.g  $A = \{1, 4, 9, 16, \dots \}$
- 4 Equal sets: Two sets X and Y have same elements, represented as X = Y5 Unequal sets: Two sets X and Y have atleast one unco-
- mmon elements, represented as  $X \neq Y$ **6** Equivalent sets: Two sets X and Y with same number
- of elements, irrespective of what elements are.
- **Singleton set:** It contains only one element For e.g.  $A = \{ 0 \}$ ,  $B = \{ i \}$
- 8 Universal set: Set of all elements in a particular context. For e.g.  $A = \{ x : x \text{ is a real number } \}$

# **Subset and Superset**

For two sets A and B, every element of A is also an element of B,

- $\bigcirc$  A is subset of B, denoted by A  $\subseteq$  B
- $\bigcirc$  B is superset of A, denoted by B $\supseteq$ A

### **Proper Subset and Proper Superset** Set A and B, A is a subset of B and $A \neq B$

- $\bigcirc$  A is proper subset of B, denoted by A $\subset$ B B is proper superset of A, denoted by  $B \supset A$

## **Power Set**

Sets - Part II

## For a set A, power set is set of all subsets including empty set

and A itself For e.g.  $A = \{ a, b, c \}$ 

Power set of  $A = \{ \}$ ,  $\{ a \}$ ,  $\{ b \}$ ,  $\{ c \}$ ,  $\{ a,b \}$ ,

 $\{b,c\}$ ,  $\{a,c\}$ ,  $\{a,b,c\}$ For a set with m elements the power set has 2<sup>m</sup> elements

**Operations on Sets** 

- For two sets A and B belong to universal set U **Union of Sets:** It is collection of all the elements of A and B, represented as AUB
- Intersection of Sets: It is collection of the elements common in both sets A and B, represented as ANB
- 3 **Difference of Sets**: It is collection of the elements of A which are not present in set B, represented as A - B 4 Complement of Sets: For set A, collection of elements
- which do not belong to A, represented as A<sup>1</sup> **Preperties of Operation on Sets**

### : AUB = BUA, $A \cap B = B \cap A$

: (AUB) UC = AU (BUC),**Associative law**  $(A \cap B) \cap C = A \cap (B \cap C)$ 

**Commutative law** 

 $: \overline{AUA} = \overline{A_1} \overline{A} \cap \overline{A} = \overline{A}$ (3) **Idempotent law** Distributive law  $: A \cap (BUC) = (A \cap B) \cup (A \cap C)$ (4)

: AUU = U

 $AU (B \cap C) = (AUB) \cap (AUC)$ 

Law of Universal set  $\overline{A} \cap \overline{U} = A$  $\overline{AUA'} = \overline{U}$ 

 $A \cap A' = \phi$ 

**Venn Diagrams** It is a digrammatic representation of all possible relationships

between different sets of finite number of elements. For e.g. A  $\{2,3,5,7\}$ , B =  $\{2,4,6,8,10\}$  can be represented

using Venn Diagrams as



. 10