Any well - defined collection of objects.

2 Set are usually denoted by capital letters.
(3) Elements of set are usually represented by small letters.
(4) If a is an element of set A, then it is represented as a $\in A$
(5) If a is not an element of set A , then it is represented a $\& \mathrm{~A}$

Representation of Sets

(1) Roster Form : Set is represented by listing its element in braces $\}$ and they are separated by comma. For e.g. $\mathrm{A}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}, \mathrm{B}=\{1,2,3,4\}$
2 Set-Builder Form : Set is represented by using statements depicting relation among its elements. For e.g. $A=\{x: x$ is a vowel in English alphabetic series $\}$ $B=\{x: x$ is a natural number less than 5$\}$

Types of Sets

(1) Empty or null or void set : It contains no elements For e.g A = $\}$
(2) Finite set: It contains countable number of elements For e.g $A=\{1,4,9,16\}$
(3) Infinite set : It contains uncountable number of elements For e.g $A=\{1,4,9,16, \ldots$.
(4) Equal sets : Two sets X and Y have same elements, represented as $\mathrm{X}=\mathrm{Y}$
5) Unequal sets : Two sets X and Y have atleast one uncommon elements, represented as $\mathrm{X} \neq \mathrm{Y}$
6 Equivalent sets : Two sets X and Y with same number of elements, irrespective of what elements are.
(7) Singleton set : It contains only one element For e.g. $A=\{0\}, B=\{i\}$
8 Universal set : Set of all elements in a particular context. For e.g. $A=\{x: x$ is a real number $\}$

Subset and Superset

For two sets A and B , every element of A is also an element of B ,
(1) A is subset of B , denoted by $\mathrm{A} \subseteq \mathrm{B}$
(2) B is superset of A , denoted by $\mathrm{B} \supseteq \mathrm{A}$

Proper Subset and Proper Superset
Set A and B, A is a subset of B and $A \neq B$
(1) A is proper subset of B, denoted by $A \subset B$
(2) B is proper superset of A , denoted by $\mathrm{B} \supset \mathrm{A}$

Sets - Part II

For a set A, power set is set of all subsets including empty set and A itself
For e.g. $A=\{a, b, c\}$
Power set of $\mathrm{A}=\{\{ \},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}$,
For a set with m elements the power set has 2^{m} elements
Operations on Sets
For two sets A and B belong to universal set U
(1) Union of Sets : It is collection of all the elements of A and B , represented as AUB
2) Intersection of Sets : It is collection of the elements common in both sets A and B, represented as A BB
(3) Difference of Sets : It is collection of the elements of A which are not present in set B, represented as A-B
4. Complement of Sets : For set A, collection of elements which do not belong to A , represented as A^{1}

Preperties of Operation on Sets
(1) Commutative law $: \mathrm{AUB}=\mathrm{BUA}$, $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
Associative law $:(\mathrm{AUB}) \mathrm{UC}=\mathrm{AU}(\mathrm{BUC})$,
$(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$
Idempotent law $: \mathrm{AUA}=\mathrm{A}_{1} \quad \mathrm{~A} \cap \mathrm{~A}=\mathrm{A}$
Distributive law
$: \mathrm{A} \cap(\mathrm{BUC})=(\mathrm{A} \cap \mathrm{B}) \mathrm{U}(\mathrm{A} \cap \mathrm{C})$
$\mathrm{AU}(\mathrm{B} \cap \mathrm{C})=(\mathrm{AUB}) \cap(\mathrm{AUC})$
Law of Universal set $: A U U=U$
$\mathrm{A} \cap \mathrm{U}=\mathrm{A}$
$\mathrm{AUA}^{\prime}=\mathrm{U}$
$\mathrm{AnA}^{\prime}=\phi$

Venn Diagrams

It is a digrammatic representation of all possible relationships between different sets of finite number of elements. For e.g. A $\{2,3,5,7\}, B=\{2,4,6,8,10\}$ can be represented using Venn Diagrams as

