Multiplication Of Matrices

- Matrix product $A B$ is defined only when the number of columns of A is equal to number of rows of B
- For a matrix A of order ix j and matrix B of order j x k. Product AB results in matrix C of oder ixk .
- Each element of C is calculated as follow:

$$
C_{i k}=\Sigma_{j} A_{i j} B_{j k}
$$

Where C_{ik} is $(\mathrm{i}, \mathrm{k})^{\text {th }}$ element of C
$A_{i j}$ is $(i, j)^{\text {th }}$ element of A
B_{jk} is $(\mathrm{j}, \mathrm{k})^{\text {th }}$ element of B
Σ_{j} summation sign, which indicates that the $\mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{jk}}$ terms should be summed over j.

Properties Of Matrix Multiplication

For three matrices A, B , C.
(1) Associative Law: $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
(2) Distributive Law: $A(B+C)=A B+A C$
(3) Multiplicative Identity: $\mathrm{A}=\mathrm{IA}=\mathrm{A}$

Transpose Of Matrix

- Matrix obtained by interchanging rows and columns of original matrix
- For matrix A, transpose of A is denoted by A^{\top} or A^{\prime}

Properties Of Transpose Matrix

(1) $\left(\mathbf{A}^{\top}\right)^{\top}=\mathbf{A}$
3. $(A+B)^{\top}=A^{\top}+B^{\top}$
(2) $\left(K A^{\top}\right)^{\top}=K A^{\top}$
4. $(A B)^{\top}=B^{\top} A^{\top}$
where K is a scalar.
(5) $(A B C)^{\top}=C^{\top} B^{\top} A^{\top}$

Symmetric Matrix \quad For a square matrix $\mathrm{A}, \mathrm{A}^{\mathrm{T}}=\mathrm{A}$

Skew-Symmetric Matrix - For a square matrix $A, A^{\top}=-A$

Properties Of Symmetric Matrix And Skew-Symmetric Matrix
(1) $A+A^{\top}$ is a symmetric matrix.
2. $\mathrm{A}-\mathrm{A}^{\top}$ is a skew-symmetric matrix.
(3) $A=1 / 2\left(A+A^{\top}\right)+1 / 2\left(A+A^{\top}\right)$
$=1 / 2($ symmetric matrix) $+1 / 2$ (skew-symmetric matrix)

Invertible Matrices

- For square matrix A and B, if $A B=B A=I$ then B is the inverse matrix of A. - Inverse of matrix A is denoted by A^{-1}
- For a given square matrix there is one unique inverse matrix.
- For an inverse of A to exist, $|A| \neq 0$

Properties Of Inverse Matrix
(1) $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$
(3) $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
(2) $(A B)^{-1}=B^{-1} A^{-1}$
(4) $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$

