

Multiplication Of Matrices

- Matrix product AB is defined only when the number of columns of A is equal to number of rows of B
- For a matrix A of order i x j and matrix B of order j x k. Product AB results in matrix C of oder i x k.
- Each element of C is calculated as follow:

$$\mathbf{C}_{ik} = \sum_{j} \mathbf{A}_{ij} \mathbf{B}_{jk}$$

Where C_{ik} is (i, k)th element of C A_{ij} is (i, j)th element of A B_{jk} is (j, k)th element of B Σ_j summation sign, which indicates that the a_{ij} b_{jk} terms should be summed over j.

Properties Of Matrix Multiplication

For three matrices A, B, C.

- **1** Associative Law: (AB)C = A(BC)
- Distributive Law: A (B + C) = AB + AC
- B Multiplicative Identity : AI = IA = A

Transpose Of Matrix-

- Matrix obtained by interchanging rows and columns of original matrix
- For matrix A, transpose of A is denoted by A^T or A^t

 Properties Of Tr (A^T)^T = A (KA^T)^T = KA^T where K is a scalar. 	Transpose Matrix (A + B) ^T = A ^T + B ^T (AB) ^T = B ^T A ^T (ABC) ^T = C ^T B ^T A ^T
Symmetric Matrix	For a square matrix A, $A^T = A$
Skew-Symmetric Matrix—	For a square matrix A, $A^T = -A$
Properties Of Symmetric Matrix And Skew-Symmetric Matrix	
1 A + A ^T is a symmetric matrix.	

2 A - A^{T} is a skew-symmetric matrix.

$$3 A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A + A^{T})$$

= ¹/₂(symmetric matrix) + ¹/₂(skew-symmetric matrix)

Invertible Matrices

- For square matrix A and B, if AB = BA = I then B is the inverse matrix of A.
 Inverse of matrix A is denoted by A⁻¹
- For a given square matrix there is one unique inverse matrix.
- For an inverse of A to exist, $|A| \neq 0$

 Properties Of Inverse Matrix

 1 $(A^{T})^{-1} = (A^{-1})^{T}$ 3 $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

 2 $(AB)^{-1} = B^{-1}A^{-1}$ 4 $(A^{-1})^{-1} = A$