Current Electricity - I

Current: Rate of flow of charfe; $I = \frac{Q}{f}$ $1A = \frac{1C}{1s} = 1 \text{ Cs}^{-1}$

$$\frac{C}{r} = 1 \text{ Cs}^{-1}$$

 $I_{inst} = \frac{\lim}{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$

Instantaneous Current

If n electrons pass through the cross section of a conductor in time t, then total **charge** passed through the conductor is $\mathbf{Q} = \mathbf{n} \times \mathbf{e}$

Current
$$I = \frac{ne}{t}$$

Ohm's Law : $V = IR \Rightarrow R = \frac{V}{I}$

S. I unit of μ is $\frac{m^2}{Vs}$

Limitations of Ohm's Laws

 $V_d = drift$ velocity of free electrons

 τ = average relaxation time

n = number of free electrons

a) Unilateral Networks: Diodes, Transistors

Mobility (μ) = $\frac{|v_d|}{F} = \frac{e\tau}{m}$

Ohm's Law is NOT applicable to

ρ_0 - Resistivity at a reference temperature T_0 . α - temperature coefficient of resitivity $(\alpha > 1 \text{ for Metals or Conductors})$

 $\rho_{t} = \rho_{0} [1+\alpha (T-T_{0})]$

 ρ_1 - Resistivity at a temperature T.

Note: With increase in temperature,

Insulators - Highest

Temperature Dependence Of Resistivity

First Digit Second Digit

0

Nil

Green Blue 1M 10M Violet 100M Grey

8

Nil

Nil

Nil

Black

Brown

Red

Orange

Yellow

White

Gold

Silver

In Parallel: The Voltage drop

across each of the branches is

other end (Higher Potential)

Series

 $\varepsilon_{\text{eq}} = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n$

 $r_{eq} = r_1 + r_2 + ... + r_n$

 $\varepsilon_{eq} = n\varepsilon \& r_{eq} = nr$

Negative end | &

of cell

If Cells are Identical:

EMF (έ) - Work done per unit charge to take

charge from one end (Lower Potential) to the

EMF ($\dot{\epsilon}$) - The potential difference between the

positive And negative electrodes in an open

the same

Or:

circuit,

 $\pm 1\%$

 $\pm 2\%$

 $\pm 0.25\%$

 $\pm 0.10\%$

 $\pm 0.05\%$

Nil

1G

Current Electricity - III

Combination of Cells

In Series: The current is the

Parallel

 $\frac{1}{r_{eq}} = \frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n}$

 $\frac{\varepsilon_{\text{eq}}}{r_{\text{eq}}} = \frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2} + \dots + \frac{\varepsilon_n}{r_n}$

Positive end

of cell

If Cells are Identical:

 $\varepsilon_{n} = \varepsilon \& r_{n} = \frac{r}{n}$

same at each resistor

R1

Current in the Circuit

Kirchhoff's Laws

Inside the Cell

Junction Rule

$\sum V = 0$

Loop Rule

(KVL)

R

A

Note: Galvanometer gives null deflection for the Balance Condition

Meter Bridge

Balance Condition:

 $\frac{R_1}{R_2} = \frac{R_3}{R_4}$

