Straight Line

Straight Line is a geometrical shape which has no breadth . It extends in both directions with no end points.

Slope of Line

Slope of line is a number that measures its steepness. It is denoted by m. Slope of line can be either positive, zero or negative.

Calculation slope of Line

1. When line makes an angle θ with the positive direction of x - axis.

2. When the line passess through the point (x_{1}, y_{1}) and (x_{2}, y_{2}).

$$
\text { Slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Results Based on Slopes of Two lines

For two lines with slope m_{1} and m_{2} we have,

1. If $m_{1}=m_{2}$, then the two lines are parallel.
2. If $m_{1} m_{2}=-1$, then the two lines are perpendicular to each other.
3. If the lines are intersecting, then the acute angle between them is given as

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

Collinearity of Three points

$A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are collinear iff

$$
\text { Slope of } A B=\text { Slope of } B C
$$

ie

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}
$$

Various forms of Equation of Line

1. Horizontal line $y=k$ where $k=$ distance of line from x-axis	2. Vertical line $x=h$ where $h=$ distance of line from y-axis
3. Slope point form Line passing through ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and having slope m $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$	4. Two point form Line passing through (x_{1}, y_{1}) and (x_{2}, y_{2}) $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$
5. Slope Intercept form Line having slope m and y-intercept as c $y=m x+c$	6. Intercept form Line having x-intercept as a and y-intercept as b $\frac{x}{a}+\frac{y}{b}=1$

General Equation of Line

General equation for any line is $A x+B y+C=0$ for the line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=\mathbf{0}$ slope $=\frac{-A}{B}$
x-intercept $=\frac{-C}{A}, y$-intercept $=\frac{-C}{B}$

Distance

1. Distance between Two Points :- Distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is.

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

2. Distance between Points and Line :- Perpendicular distance between point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ is.

$$
d=\left|\frac{A x_{1}+B y_{1}+C}{\sqrt{A^{2}+B^{2}}}\right|
$$

3. Distance between Two Parallel Lines :- Perpendicular distance between two parallel lines $A \mathbf{x}+\mathrm{By}+\mathrm{C}_{1}=0$ and $\mathrm{Ax}+\mathrm{By}+\mathrm{C}_{2}=0$ is.

$$
d=\left|\frac{C_{1}-C_{2}}{\sqrt{A^{2}+B^{2}}}\right|
$$

