\equiv STRAIGHT LINES \equiv

Straight Line

Straight Line is a geometrical shape which has no breadth . It extends in both directions with no end points.

 $\rightarrow l$

Slope of Line

Slope of line is a number that measures its steepness. It is denoted by m. Slope of line can be either positive, zero or negative.

Calculation slope of Line

1. When line makes an angle θ with the positive direction of x - axis.

2. When the line passess through the point (x_1 , y_1) and (x_2 , y_2).

Results Based on Slopes of Two lines

For two lines with slope m1 and m2 we have,

- 1. If $m_1 = m_2$, then the two lines are parallel.
- 2. If $m_1m_2 = -1$, then the two lines are perpendicular to each other.
- 3. If the lines are intersecting, then the acute angle between them is given as

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Collinearity of Three points

ie

A(x_1 , y_1), B(x_2 , y_2) and C(x_3 , y_3) are collinear iff

Slope of AB = Slope of BC

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{y_3 - y_2}{x_3 - x_2}$$

STRAIGHT LINES

/arious forms of Equation of Line	
1. Horizontal line y = k where k = distance of line from x-axis	2. Vertical line x = h where h = distance of line from y-axis
<pre>3. Slope point form Line passing through (x1, y1) and having slope m (y-y1) = m (x-x1)</pre>	4. Two point form Line passing through (x_1, y_1) and (x_2, y_2) $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$
5. Slope Intercept form Line having slope m and y-intercept as c y = mx + c	6. Intercept form Line having x-intercept as a and y-intercept as b $\frac{x}{a} + \frac{y}{b} = 1$

General Equation of Line

General equation for any line is Ax + By + C = 0 for the line Ax + By + C = 0

slope =
$$\frac{-A}{B}$$

x-intercept = $\frac{-C}{A}$, y-intercept = $\frac{-C}{B}$

Distance

1. Distance between Two Points :- Distance between two points (x_1, y_1) and (x_2, y_2) is.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

2. Distance between Points and Line :- Perpendicular distance between point (x₁, y₁) and line A**x**+B**y**+C=0 is.

$$d = \begin{vmatrix} Ax_1 + By_1 + C \\ \hline \sqrt{A^2 + B^2} \end{vmatrix}$$

3. Distance between Two Parallel Lines :- Perpendicular distance between two parallel lines Ax+By+C₁=0 and Ax+By+C₂=0 is.

$$d = \left| \frac{C_1 - C_2}{\sqrt{A^2 + B^2}} \right|$$