Permutation And Combination

Fundamental Principle of Counting

For several mutually independent events $P_1, P_2, P_3, \dots, P_n$ which can occur in $n(P_1), n(P_2), n(P_3), \dots, n(P_n)$ ways.

Addition Rule

The no. of ways in which either P_1 or P_2 or P_3 or.....or P_n occurs is $n(E) = n(P_1) + n(P_2) + n(P_3) + \dots + n(P_n)$

Product Rule

The no. of ways in which P_1 and P_2 and P_3 and and P_n occur is $n(E) = n(P_1) \times n(P_2) \times n(P_3) \times \times n(P_n)$.

Factorial Notation

It is denoted by n! and defined as

$$n!=n \times (n-1) \times (n-2) \times \times 3 \times 2 \times 1$$

where n is a natural number

We also define 0!=1

Permutation

It is an arrangement, in a defined order, of objects taken some or all at a time.

Permutation when all objects are distinct

Premutation of n different objects taken r at a time, where $0 \le r \le n$, without repetition is $,^nP_r = \frac{n!}{(n-r)!}$ and with repetition of objects is n^r .

Permutation when all objects are not distinct

Permutation of n objects where

P₁ objects are of one kind,

P₂ objects are of second kind,

•

 P_k objects are of k^{th} kind and the rest if any, are of different kind is

$$= \frac{n!}{P_1!P_2!...P_k!}$$

Properties of ⁿP_r

$$^{n}P_{1} = n$$

$$^{n}P_{0} = 1$$

Combination

 $^{n}P_{n-1} = n!$

- 1 It is selection of r objects from n objects where order of selection does not matter. Here , $0 \le r \le n$.
- 2 It is denoted as (n, r) or ⁿC_{r,} calculated as

$$^{n}C_{r} = \frac{n!}{r! (n-r)!}$$

$${}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!}$$

Properties of ⁿC_r

$$^{n}C_{r} = {}^{n}C_{n-r}$$

3 If
$${}^{n}C_{r} = {}^{n}C_{p}$$
 then either $r = p$ or $r + p = n$

$$^{0}C_{1}=n$$