Vector It is a quantity which has both magnitude and direction.

Position Vector

For a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in 3-D coordinate system, $\overline{\mathrm{OP}}$ or $\overline{\mathrm{r}}$ is the position vector with origin O as initial point.
Magnitude of $\overline{\mathrm{OP}}=|\overline{\mathrm{OP}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$

Direction Cosines and Direction Ratios

(1) Position vector $\overline{\mathrm{OP}}$ makes angle α, β and γ with x, y and z axes.
(2) $\cos \alpha, \cos \beta$ and $\cos \gamma$ are the direction cosine of vector $\overline{\mathrm{OP}}$ and denoted by l, m and n .
(3) Direction cosines are unique for a given line

4 Number proportional to direction cosines are called as direction ratios, denoted by a, b and c .

(5) We also have $\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$.

Types Of Vectors
(1) Zero Vector Vector with zero magnitude, denoted as ō
(2) Unit Vector Vector whose magnitude is 1 unit. Unit vector along ā is denoted as â
(3) Cointial Vectors Two or more vectors with same initial point

4 Collinear Vectors Two or more vectors lying on the same or parallel lines.
5 Equal Vectors Two or more vectors with same magnitude and direction. as that of the given vector.

Addition Of Vectors

Triangle Law Of Addition

$\overline{\mathrm{AC}}=\overline{\mathrm{AB}}+\overline{\mathrm{BC}}$
i.e $\overline{A B}+\overline{\mathrm{BC}}-\overline{\mathrm{AC}}=0$
$\overline{\mathrm{AB}}+\overline{\mathrm{BC}}+\overline{\mathrm{CA}}=0$
$\overline{A B}+\overline{B C}+\overline{C A}=\overline{A A}$

Parallelogram Law Of Addition
$\overline{\mathrm{OA}}+\overline{\mathrm{OB}}=\overline{\mathrm{OC}}$
i.e $\overline{\mathrm{a}}+\overline{\mathrm{b}}=\overline{\mathrm{c}}$

Properties Of Vector Addition
$\overline{\mathrm{a}}+\overline{\mathrm{b}}=\overline{\mathrm{b}}+\overline{\mathrm{a}}$; commutative property $(\overline{\mathrm{a}}+\overline{\mathrm{b}})+\overline{\mathrm{c}}=\overline{\mathrm{a}}+(\overline{\mathrm{b}}+\overline{\mathrm{c}}) ;$ Associative property

Multiplication Of Scalar and Vector

(1) Multiplication of scalar λ with vector \bar{a} is $\lambda \overline{\mathrm{a}}$.
(2) $\lambda \bar{a}$ is collinear to vector \bar{a}.
(3) Direction of $\lambda \bar{a}$ depends upon λ.
a If λ is positive its direction is same as that of \bar{a}.
(b) If λ is negative its direction is opposite to that of \bar{a}.
(4) Magnitude of $\lambda \bar{a}=|\lambda \bar{a}|$

$$
=|\lambda||\bar{a}|
$$

Components Of Vectors

For position vector OP of a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, We have

$$
\overline{\mathrm{OP}}=x \overline{\mathrm{i}}+y \overline{\mathrm{j}}+z \overline{\mathrm{k}}
$$

Where \bar{i}, \bar{j} and \bar{k} are unit vectors along x, y and z - axes , and

$x \bar{i}, y \bar{j}$ and $z \bar{k}$ are the components of vector OP along x, y and z-axes.
Vector Joining Two Points

$$
\begin{aligned}
& p_{1}\left(x_{1}, x_{1}, z_{1}\right) \quad p_{2}\left(x_{2^{\prime}} x_{2^{\prime}}, z_{2}\right) \\
& \overline{p_{1} p_{2}}=\left(x_{2}-x_{1}\right) i^{-}+\left(y_{2}-y_{1}\right) j^{-\bar{j}}+\left(z_{2}-z_{1}\right) \bar{k} \\
& \left|\overline{p_{1} p}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{aligned}
$$

Section Formula

Internal Division

$$
\overline{\mathrm{r}}=\frac{\mathrm{m} \overline{\mathrm{~b}}+\mathrm{n} \overline{\mathrm{a}}}{\mathrm{~m}+\mathrm{n}}
$$

External Division

$$
\overline{\mathrm{r}}=\frac{\mathrm{m} \overline{\mathrm{~b}}-\mathrm{n} \overline{\mathrm{a}}}{\mathrm{~m}-\mathrm{n}}
$$

Midpoint Formula

$$
\overline{\mathrm{r}}=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}}{2}
$$

Vector Algebra - Part III

Scalar Product

For vectors \bar{a} and $\overline{\mathrm{b}}$. It is denoted as

$$
\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=|\overline{\mathrm{a}}||\overline{\mathrm{b}}| \cos \theta
$$

Where θ is angle between a and $\mathrm{b}, 0 \leq \theta \leq \mathrm{J}$

Properties Of Scalar Product

(1) $\bar{a} \cdot \bar{b}$ is a scalar quantity.
(8) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}$
(2) $\overline{\mathrm{a}} . \overline{\mathrm{b}}=\overline{0} \Leftrightarrow \overline{\mathrm{a}} \perp \overline{\mathrm{b}}$
(9) $\bar{a} \cdot(\bar{b}+\bar{c})=\bar{a} \cdot \bar{b}+\bar{a} \cdot \bar{c}$
(3) $\overline{\mathrm{a}} . \overline{\mathrm{b}}=|\overline{\mathrm{a}}||\overline{\mathrm{b}}| \Leftrightarrow \theta=0^{0}$
(4) $\overline{\mathrm{a}} . \overline{\mathrm{b}}=-|\overline{\mathrm{a}}||\overline{\mathrm{b}}| \Leftrightarrow \theta=180^{\circ}$
(5) $\overline{\mathrm{i}} . \overline{\mathrm{i}}=\bar{j} \cdot \overline{\mathrm{j}}=\overline{\mathrm{k}} \cdot \overline{\mathrm{k}}=1$
(6) $\bar{i} . \bar{j}=\bar{j} \cdot \bar{k}=\bar{k} \cdot \bar{i}=0$
(7) $\cos \theta=\frac{\bar{a} \cdot \bar{b}}{|\bar{a}||\bar{b}|}$
10 if $\bar{a}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}$ and

$$
\bar{b}=b_{1} \bar{i}+b_{2} \bar{j}+\bar{b}_{3} k
$$

then

$$
\bar{a} \cdot \bar{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

11 ($\lambda \bar{a}) \cdot \bar{b}=\lambda(\bar{a} \cdot \bar{b})$

$$
=\bar{a} \cdot(\lambda \cdot \bar{b})
$$

Vector Product

For vectors \bar{a} and \bar{b} it is defined as

$$
\overline{\mathrm{a}} \times \overline{\mathrm{b}}=|\overline{\mathrm{a}}||\overline{\mathrm{b}}| \sin \theta \hat{n}
$$

Where θ is an angle between \bar{a} and $\bar{b}, 0 \leq \theta \leq \pi$ and \hat{n} is the unit vector perpendicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ such that $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and \hat{n} form a right handed system

Properties Of Vector Product

(1) $\bar{a} \times \bar{b}$ is a vector.
(6) $\overline{\mathrm{a}} x \overline{\mathrm{~b}}=-\overline{\mathrm{b}} x \overline{\mathrm{a}}$
(2) $\bar{a} \times \bar{b}=0 \Leftrightarrow \bar{a} \| \bar{b}$
(7) $\bar{a} x(\bar{b}+\bar{c})=\bar{a} \times \bar{b}+\bar{a} \times \bar{c}$
(3) $\bar{i} x \bar{i}=\bar{j} x \bar{j}=\bar{k} x \bar{k}=0$
(4) $\overline{\mathrm{i}} \mathrm{x} \overline{\mathrm{j}}=\overline{\mathrm{j}} \times \overline{\mathrm{k}}=\overline{\mathrm{i}}, \overline{\mathrm{k}} \mathrm{x} \overline{\mathrm{i}}=\overline{\mathrm{j}}$

(5) $\sin \theta=\frac{|\bar{a} \times \bar{b}|}{|\bar{a}| \cdot|\bar{b}|}$

