Motion in a plane

Examples of motion in two dimensions.

Circular motion

Equations of motion in a straight line

$$
\begin{aligned}
& v=u+a t \\
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s
\end{aligned}
$$

$v=$ final velocity of the particle
$\mathbf{u}=$ initial velocity of the particle
$s=$ displacement of the particle
a = acceleration of the particle
$t=$ the time interval in which the particle is in consideration

Projectile motion

Equations of motion in a plane

Apply equations of motion in a straight line separately in both directions, X and Y.

$$
\begin{array}{ll}
v_{x}=u_{x}+a_{x} t & v_{y}=u_{y}+a_{y} t \\
s_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2} & s_{y}=u_{y} t+\frac{1}{2} a_{y} t^{2} \\
v_{x}^{2}=u_{x}^{2}+2 a_{y} s & v_{y}^{2}=u_{y}^{2}+2 a_{y} s
\end{array}
$$

Projectile motion

- Projectile refers to an object that is in flight along the horizontal and vertical direction simultaneously.
- Acceleration acts only in the vertical direction due to acceleration due to gravity (g).
- No acceleration in the horizontal direction.
- Projectile motion is always in the form of parabola.

$$
y=a x+b x^{2}
$$

$$
u \sin \theta \quad B
$$

Formulas for projectile motion

Components of velocity at time t

Position at time t

Equation of path of projectile motion
Time of maximum height
Time of flight
Maximum height of projectile
Horizontal range of projectile
Maximum horizontal range ($\theta_{0}=45^{\circ}$)

$$
\begin{aligned}
& u_{x}=u \cos \theta \\
& u_{y}=u \sin \theta-g t \\
& x=(u \cos \theta) t \\
& y=(u \sin \theta) t-1 / 2 g^{2} \\
& y=(\tan \theta) x-g x^{2} / 2(u \cos \theta)^{2} \\
& t_{m}=u \sin \theta / g \\
& 2 t_{m}=2(u \sin \theta / g) \\
& h_{m}=(u \sin \theta)^{2} / 2 g \\
& R=u^{2} \sin 2 \theta / g \\
& R_{m}=u^{2} / g
\end{aligned}
$$

Velocity

Magnitude of the velocity vector is given by

$$
|v|=v=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

Acceleration

Rate of change of velocity of an object with respevct to time.

$$
a_{x}=\frac{d}{d x} v_{x} \quad a_{y}=\frac{d}{d x} v_{y}
$$

Relative motion velocity

- Velocity of an object relative to some other object that might be stationary or moving with either same or different velocity.

- To the man Q, girl P appears to move at a speed of $1 \mathrm{~m} / \mathrm{s}$ towards Q.
- To the girl P, man Q appears to move at a speed of $1 \mathrm{~m} / \mathrm{s}$ towards P.
- Relative velocity equation, $\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{P} / \mathrm{Q}}+\mathrm{V}_{\mathrm{Q}}$
- Velocity diagram, $\mathrm{V}_{\mathrm{P} / \mathrm{Q}}=\mathrm{V}_{\mathrm{P}}+\left(-\mathrm{V}_{\mathrm{Q}}\right)$

Relative velocity in 2 dimensions

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}} \\
& \mathrm{~V}_{\mathrm{ba}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}} \\
& \mathrm{~V}_{\mathrm{ba}}=-\mathrm{V}_{\mathrm{ab}} \\
& \left|\mathrm{~V}_{\mathrm{ab}}\right|=\left|\mathrm{V}_{\mathrm{ba}}\right|
\end{aligned}
$$

$V_{a}, V_{b}=$ Velocity of object A and B with respect to a comman frame of reference.
$V_{a b}=$ Velocity of a with respect to b.
$V_{b a}=$ Velocity of b with respect to a.
-When two objects seem to be statiolnary for one another, in that case.

$$
\begin{gathered}
V_{b}=V_{a} \\
V_{b a}=V_{a b}=0
\end{gathered}
$$

- If $\mathrm{V}_{\mathrm{b}}>0$ and $\mathrm{V}_{\mathrm{a}}>0$ or $\mathrm{V}_{\mathrm{b}}>0$ and $\mathrm{V}_{\mathrm{a}}>0$, and $V_{a}>V_{b}$ then Object A appears faster to B.
- The magnitude of V_{ba} and V_{ab} will be higher than the magnitude of V_{a} and V_{b} if V_{a} and V_{b} are of opposite sign. In this case, both objects will appear moving faster to one another.

Circular motion

- Circular motion is the movement of an object in a circular path.

Uniform Circular motion

- Uniform circular motion can be described as the motion of an object in a circle at a constant speed.

Non-Uniform Circular motion

- Non-uniform circular motion can be described as the motion of an object in a circle where the speed is not constant.

Variables in Circular motion

Angular Displacement

The angle which is subtended by the position vector at the centre of the circular path.
Unit: Radian (Rad)
Angular Displacement, $\theta=\mathrm{dS} / \mathrm{r}$ where, $\Delta s=$ Linear displacement $r=$ Radius

Angular Velocity

Rate of change of angular displacement.
Unit: Rad/s
Angular velocity, $\omega=\mathrm{d} \theta / \mathrm{dt}$
Linear velocity, $v=r \omega$

Angular Acceleration

Rate of change of angular velocity. Unit: rad/s ${ }^{2}$

Angular Acceleration, $a=\Delta \omega / \Delta t$
Linear acceleration, $a_{t}=r a$

Centripetal Acceleration

Acceleration that acts on a body in circular motion whose direction is towards the centre of the circvle. Centripetal Acceleration, $a_{c}=v^{2} / r$

