Motion in a Plane - Part I

Motion in a plane

Examples of motion in two dimensions.

Circular motion

Equations of motion in a straight line

$$v = u + at$$

$$s = ut + \frac{1}{2} at^{2}$$

$$v^{2} = u^{2} + 2as$$

v = final velocity of the particle

u = initial velocity of the particle

s = displacement of the particle

a = acceleration of the particle

t = the time interval in which the particle is in consideration

Equations of motion in a plane

Apply equations of motion in a straight line separately in both directions, X and Y.

$$\mathbf{v}_{x} = \mathbf{u}_{x} + \mathbf{a}_{x}\mathbf{t}$$

$$\mathbf{v}_{y} = \mathbf{u}_{y} + \mathbf{a}_{y} \mathbf{t}$$

$$s_x = u_x t + \frac{1}{2} a_x t^2$$

$$s_x = u_x t + \frac{1}{2} a_x t^2$$
 $s_y = u_y t + \frac{1}{2} a_y t^2$

$$v_x^2 = u_x^2 + 2a_y s$$

$$v_{x}^{2} = u_{x}^{2} + 2a_{y}s$$
 $v_{y}^{2} = u_{y}^{2} + 2a_{y}s$

Projectile motion

- · Projectile refers to an object that is in flight along the horizontal and vertical direction simultaneously.
- · Acceleration acts only in the vertical direction due to acceleration due to gravity (g). $u \sin \theta B$
- No acceleration in the horizontal direction.
- Projectile motion is always in the form of parabola.

$$y = ax + bx^2$$

Formulas for projectile motion

Components of velocity at time t

Position at time t

Equation of path of projectile motion

Time of maximum height

Time of flight

Maximum height of projectile

Horizontal range of projectile

Maximum horizontal range ($\theta_0 = 45^\circ$)

 $u_x = u \cos\theta$

 $u_y = u \sin\theta - gt$

 $x = (u \cos \theta)t$

 $y = (u \sin \theta)t - 1/2 gt^2$

 $y = (\tan \theta)x - gx^2/2(u \cos \theta)^2$

 $t_m = u \sin\theta/g$

 $2t_m = 2(u \sin\theta/g)$

 $h_m = (u \sin \theta)^2 / 2g$

 $R = u^2 \sin 2\theta/g$

 $R_m = u^2/g$

Motion in a Plane - Part II

Velocity

Magnitude of the velocity vector is given by

$$|v| = v = \sqrt{v_x^2 + v_y^2}$$

Acceleration

Rate of change of velocity of an object with respevct to time.

$$a_x = \frac{d}{dx} V_x$$
 $a_y = \frac{d}{dx} V_y$

Relative motion velocity

 Velocity of an object relative to some other object that might be stationary or moving with either same or different velocity.

- To the man Q, girl P appears to move at a speed of 1 m/s towards Q.
- To the girl P, man Q appears to move at a speed of 1 m/s towards P.
- Relative velocity equation, $V_p = V_{P/Q} + V_Q$
- Velocity diagram, $V_{P/Q} = V_P + (-V_Q)$

Relative velocity in 2 dimensions

$$V_{ab} = V_a - V_b$$

$$V_{ba} = V_b - V_a$$

$$V_{ba} = -V_{ab}$$

$$|V_{ab}| = |V_{ba}|$$

 $V_{\rm a}$, $V_{\rm b}$ = Velocity of object A and B with respect to a comman frame of reference.

 V_{ab} = Velocity of a with respect to b.

 V_{ba} = Velocity of b with respect to a.

• When two objects seem to be statiolnary for one another, in that case.

$$V_b = V_a$$
$$V_{ba} = V_{ab} = 0$$

 If V_b > 0 and V_a > 0 or V_b > 0 and V_a > 0, and V_a > V_b then Object A appears faster to B.

faster to one another.

• The magnitude of V_{ba} and V_{ab} will be higher than the magnitude of V_a and V_b if V_a and V_b are of opposite sign. In this case, both objects will appear moving

Motion in a Plane - Part III

Circular motion

• Circular motion is the movement of an object in a circular path.

Uniform Circular motion

 Uniform circular motion can be described as the motion of an object in a circle at a constant speed.

Non-Uniform Circular motion

 Non-uniform circular motion can be described as the motion of an object in a circle where the speed is not constant.

Variables in Circular motion

Angular Displacement

The angle which is subtended by the position vector at the centre of the circular path.

Unit: Radian (Rad)

Angular Displacement, $\theta = dS/r$ where, $\Delta s = Linear displacement$

r = Radius

Angular Velocity

Rate of change of angular displacement.

Unit: Rad/s

Angular velocity, $\omega = d\theta/dt$

Linear velocity, $v = r \omega$

Angular Acceleration

Rate of change of angular velocity.

Unit: rad/s²

Angular Acceleration, $\alpha = \Delta \omega / \Delta t$ Linear acceleration, $a_t = r \alpha$

Centripetal Acceleration

Acceleration that acts on a body in circular motion whose direction is towards the centre of the circule. Centripetal Acceleration, $a_c = v^2/r$

