Coordination Compounds - Part I #### **IUPAC Nomenclature of Coordination** # **Coordination Compounds - Part II** #### **Structural Isomerism** Coordination isomerism observed in the coordination compounds having both cationic and anionic complex ions. complex ions [Pt(NH₃)₄] [CuCl₄] Tetraammineplatinum(II) tetrachloridocuprate(II) and [Cu(NH₃)₄] [PtCl₄] Tetraamminecopper(II) tetrachloridoplatinate(II) lonization isomerism afford different anions and cations in solution [Pt(OH)₂(NH₃)₄] SO₄ Tetraamminedihydroxoplatinum(IV)sulphate and [PtSO₄(NH₃)₄](OH)₂ Tetraamminesulphatoplatinum(IV)hydroxide Hydrate isomerism arises when different number of water molecules are present inside and outside the coordination sphere. [Co(NH₃)₄H₂OCl]Br₂ Tetraammineaquachloridocobalt(III)bromide and [Co(NH₃)₄(Br)₂]Cl.H₂O Tetraamminedibromidocobalt(III) chloride monohydrate Linkage Isomerism isomerism occurs in complex compounds which contain ambidentate ligands [Co(NH₃)₅NO₂]Cl₂ Pentaaminenitrito-n-cobalt(III) chloride(yellow) and [Co(NH₃)₅ONO]Cl₂ Pentaaminenitrito-o-cobalt(III) chloride(yellow) Polymerisation Isomerism it occurs between compounds having the same empirical formula, but different molecular weights. $[Pt(NH_3)_2]Cl_2$; $[Pt(NH_3)_4Cl_4]$; $[Pt(NH_3)_3Cl]_2[PtCl_4]$ Coordination position Isomerism exhibited by polynuclear complexes by changing the position of ligands # **Coordination Compounds - Part III** ## Stereo Isomerism Geometric Ligands at different locations relative to one another. fac **Transplatin** **Optical** Nonsuperimposable mirror images of each other. # Werner's Theory Basically explains the structure of the complex compounds Limitations ## **Postulates** - Metals consist of two types of valencies; **Primary and Secondary** • Primary is fulfilled by anions which are non - directional. - Secondary are fulfilled by Ligands which are directional - Why Complex compounds are formed by few - metals? • Why Coordinate bonds are directional in - nature? Why these compounds show magnetic and optical properties? ## Valence Bond Theory Explains Bonding in terms of Hybridisation and explains the magnetic behaviour of the hybridised bonds. **Postulates** Limitations # Central atom makes available vacant orbitals - equal to its coordination number These vacant hybrid orbitals form bonds - with ligands which are directional in nature - Couldn't explain colour and electronic spectra of complexes - Couldn't explain structure of [Cu (NH3)4]²⁺ Couldn't explain pairing of electrons in presence of ligands **Hybridisation and Geometry of complex** | Complex Compound or Iron | Magnetic Behaviour | Hybridisation | Shape | |---|--------------------|--------------------------------|---------------| | [Fe(CN) ₆] ³⁻ | Paramagnetic | d^2sp^3 | Octahedral | | [Fe(CN) ₆] ⁴⁻ | Diamagnetic | d^2sp^3 | Octahedral | | [Ni(CN) ₄] ²⁻ | Diamagnetic | dsp² | Square Planar | | [Cu(NH ₃) ₄]SO ₄ | Paramagnetic | dsp² | Square Planar | | [Ni(NH ₃) ₄]SO ₄ | Paramagnetic | sp ³ | Tetrahedral | | $\left[Cu(CN_4)\right]^{2^{-}}$ | Paramagnetic | dsp² | Square Planar | | [Fe(H ₂ O) ₆] ³⁺ | Paramagnetic | d^2sp^3 | Octahedral | | [Cr(CN) ₆] ³⁻ | Paramagnetic | d^2sp^3 | Octahedral | | $[Co(CN)_6]^{3-}$ | Diamagnetic | d^2sp^3 | Octahedral | | [Co(NH ₃) ₆] ³⁺ | Diamagnetic | d ² sp ³ | Octahedral | | | | | | ## Ligand field destroys the degeneracy of d orbitals and splits it into two or more energy levels. **Crystal Field Theory** $d_{x^2-y^2}$ In an octahedral complex, there are six ligands attached to the central transition metal. The d-orbital splits into two different levels. The bottom three energy levels are named d_{xy} , d_{xz} , and d_{yz} (collectively referred to as t_{2g}). The two upper energy levels are named $d_{x^2-y^2}$, and d_{z^2} (collectively referred to as eg). In a tetrahedral complex, there are four ligands attached to the central metal. The d orbitals also split into two different energy levels. The top three consist of the d_{xy} , d_{xz} , and d_{yz} orbitals. The bottom two consist of the $d_{x^2-y^2}$ and d_{z^2} orbitals. The reason for this is due to poor orbital overlap between the metal and the ligand orbitals. The orbitals are directed on the axes, while the ligands are not. ## Ligands in order of their field strength: