
Coordination Compounds - Part I

IUPAC Nomenclature of Coordination

Coordination Compounds - Part II

Structural Isomerism

 Coordination isomerism observed in the coordination compounds having both cationic and anionic complex ions.

complex ions [Pt(NH₃)₄] [CuCl₄]
Tetraammineplatinum(II)
tetrachloridocuprate(II)

and

[Cu(NH₃)₄] [PtCl₄]
Tetraamminecopper(II)
tetrachloridoplatinate(II)

lonization isomerism afford different anions and cations in solution

[Pt(OH)₂(NH₃)₄] SO₄
Tetraamminedihydroxoplatinum(IV)sulphate

and

[PtSO₄(NH₃)₄](OH)₂ Tetraamminesulphatoplatinum(IV)hydroxide

Hydrate isomerism arises when different number of water molecules are present inside and outside the coordination sphere.

[Co(NH₃)₄H₂OCl]Br₂
Tetraammineaquachloridocobalt(III)bromide

and

[Co(NH₃)₄(Br)₂]Cl.H₂O
Tetraamminedibromidocobalt(III)
chloride monohydrate

Linkage Isomerism isomerism occurs in complex compounds which contain ambidentate ligands

[Co(NH₃)₅NO₂]Cl₂
Pentaaminenitrito-n-cobalt(III)
chloride(yellow)

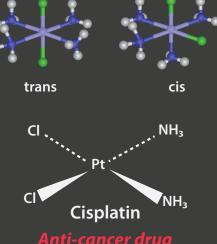

and

[Co(NH₃)₅ONO]Cl₂
Pentaaminenitrito-o-cobalt(III)
chloride(yellow)

Polymerisation Isomerism it occurs between compounds having the same empirical formula, but different molecular weights.

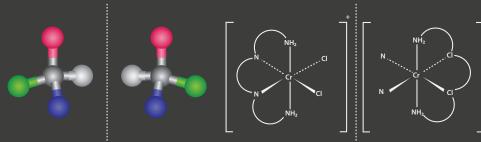
 $[Pt(NH_3)_2]Cl_2$; $[Pt(NH_3)_4Cl_4]$; $[Pt(NH_3)_3Cl]_2[PtCl_4]$

 Coordination position Isomerism exhibited by polynuclear complexes by changing the position of ligands



Coordination Compounds - Part III

Stereo Isomerism


Geometric Ligands at different locations relative to one another.

fac **Transplatin**

Optical

Nonsuperimposable mirror images of each other.

Werner's Theory

Basically explains the structure of the complex compounds Limitations

Postulates

- Metals consist of two types of valencies; **Primary and Secondary** • Primary is fulfilled by anions which are non
- directional.
- Secondary are fulfilled by Ligands which are directional
- Why Complex compounds are formed by few
- metals? • Why Coordinate bonds are directional in
- nature? Why these compounds show magnetic and optical properties?

Valence Bond Theory Explains Bonding in terms of Hybridisation and explains the magnetic behaviour of the

hybridised bonds. **Postulates** Limitations

Central atom makes available vacant orbitals

- equal to its coordination number These vacant hybrid orbitals form bonds
- with ligands which are directional in nature
- Couldn't explain colour and electronic spectra of complexes
- Couldn't explain structure of [Cu (NH3)4]²⁺ Couldn't explain pairing of electrons in presence of ligands **Hybridisation and Geometry of complex**

Complex Compound or Iron	Magnetic Behaviour	Hybridisation	Shape
[Fe(CN) ₆] ³⁻	Paramagnetic	d^2sp^3	Octahedral
[Fe(CN) ₆] ⁴⁻	Diamagnetic	d^2sp^3	Octahedral
[Ni(CN) ₄] ²⁻	Diamagnetic	dsp²	Square Planar
[Cu(NH ₃) ₄]SO ₄	Paramagnetic	dsp²	Square Planar
[Ni(NH ₃) ₄]SO ₄	Paramagnetic	sp ³	Tetrahedral
$\left[Cu(CN_4)\right]^{2^{-}}$	Paramagnetic	dsp²	Square Planar
[Fe(H ₂ O) ₆] ³⁺	Paramagnetic	d^2sp^3	Octahedral
[Cr(CN) ₆] ³⁻	Paramagnetic	d^2sp^3	Octahedral
$[Co(CN)_6]^{3-}$	Diamagnetic	d^2sp^3	Octahedral
[Co(NH ₃) ₆] ³⁺	Diamagnetic	d ² sp ³	Octahedral

Ligand field destroys the degeneracy of d orbitals and splits it into two or more energy levels.

Crystal Field Theory

 $d_{x^2-y^2}$

In an octahedral complex, there are six ligands attached to the central transition metal. The d-orbital splits into two different levels. The bottom three energy levels are named d_{xy} , d_{xz} , and d_{yz} (collectively referred to as t_{2g}). The two upper energy levels are named $d_{x^2-y^2}$, and d_{z^2} (collectively

referred to as eg).

In a tetrahedral complex, there are four ligands attached to the central metal. The d orbitals also split into two different energy levels. The top three consist of the d_{xy} , d_{xz} , and d_{yz} orbitals. The bottom two consist of the $d_{x^2-y^2}$ and d_{z^2} orbitals. The reason for this is due to poor orbital overlap between the metal and the ligand orbitals. The orbitals are

directed on the axes, while the ligands are not.

Ligands in order of their field strength: