Units of Measurement

SI Units

Seven Base SI units	Derived units	Supplimentary units

$1 \mathrm{~A}^{\circ}$ (angstrom) $=10^{-10} \mathrm{~m}$ 1 fermi $=10^{-15} \mathrm{~m}$ $1 \mathrm{AU}=1.49 \times 10^{-11} \mathrm{~m}$ $1 \mathrm{ly}=9.46 \times 10^{-15} \mathrm{~m}$ 1 parsec $=3.08 \times 10^{-16} \mathrm{~m}$

Units of Mass

Mass of atoms in a.m.u. 1 metric ton $=10^{3} \mathrm{~kg}$
1 solar mass $\approx 10^{30} \mathrm{~kg}$

Interstellar Distance

Parallax method

Method to measure such interstellar distances from earth

Dimension

A "Dimension" can be measured or derived.
The "Fundamental dimensions" (length, time, mass, temperature, amount) are distinct and are sufficient to define all the others.

Five Base Quantities

Mass M	Length L	Time T	Electric Current A	Temperature K
Dimensional Analysis		Significant Figures		

- Show the relationship between

Accurately known digits plus first uncertain digit in a measurement
different system of units

- Implicitly tell how to derive a relation
- Provide a check on relation between quantities Rule 1: All non-zero digits are always significant

Rule 2: Zeros in between significant figures are always significant

Rule 3: Space holder zeros in numbers < 1 are never significant Rule 4: Zeros at the end of a number are only significant when a decimal is in the number

Errors in Measurement
Uncertainty in the measured values

Systematic Errors

 Range of observed values Precision of measurement Minimizing Method By improving the structures of apparatusis reduced by subtracting the obtained reading fom the zero error Incorrec
calibration

Systematic Errors Vs Random Errors

Systematic Errors

Systematic error is the one that deviates from the true value of measurement by a fixed amount.

It remains constant or changes in a regular fashion in repeated measurements of the same quantity.

Caused by some flaw in the experimental apparatus or a flawed experimental design.

It can be eliminated using proper technique, calibrating equipment and employing standards.

Combination of Errors

$Z=A \pm B$	$Z=A^{2}$	$Z=A \cdot B$ or A / B
$\Delta Z=\triangle A+\triangle B$	$\frac{\Delta Z}{Z}=2 \frac{\Delta A}{A}$	$\frac{\Delta Z}{Z}=\frac{\Delta A}{A}+\frac{\Delta B}{B}$

