UNITS AND MEASUREMENT

Units of Measurement

SI Units

Seven Base
SI units

Derived units

Supplimentary units

Interstellar Distance

Parallax method

Units of Length

1 A° (angstrom) = 10^{-10} m 1 fermi = 10^{-15} m 1 AU = 1.49×10^{-11} m 1 ly = 9.46×10^{-15} m 1 parsec = 3.08×10^{-16} m

Units of Mass

Mass of atoms in a.m.u. 1 metric ton = 10^3 kg 1 solar mass $\approx 10^{30}$ kg Method to measure such interstellar distances from earth

Dimension

A "Dimension" can be measured or derived.

The "Fundamental dimensions" (length, time, mass, temperature, amount) are distinct and are sufficient to define all the others.

Five Base Quantities

Mass M

Length L

Time T

Electric Current A

Temperature K

Dimensional Analysis

- Show the relationship between different system of units
- Implicitly tell how to derive a relation
- Provide a check on relation between quantities

Significant Figures

Accurately known digits plus first uncertain digit in a measurement

Rule 1: All non-zero digits are always significant

a decimal is in the number

Rule 2: Zeros in between significant figures are always significant

Rule 3: Space holder zeros in numbers < 1 are never significant

Rule 4: Zeros at the end of a number are only significant when

Errors in Measurement

Uncertainty in the measured values

Systematic Errors

Range of observed values

Precision of measurement

Random Errors

Absolute error Relative error

 $\Delta a_n = a_n - a_{mean}$ Rel $\Delta a = \frac{\Delta a_n}{a_m}$

Rel $\Delta a = \frac{\Delta a_m}{a_m}$ $\delta_a = \frac{\Delta a_m}{a_m} \times 100 \%$

Percentage error

Causes

Minimizing Method

By improving

of apparatus

the structures

— Zero Error

The error cause by zero error of a is reduced by subtracting the obtained reading fom the zero error

__ Incorrect __ calibration

Combination of Errors

$$Z = A \pm B$$
$$\triangle Z = \triangle A + \triangle B$$

$$Z = A$$

$$\frac{\Delta Z}{Z} = 2 \frac{\Delta A}{A}$$

$$Z = A . B \text{ or } A / B$$

$$\frac{\triangle Z}{Z} = \frac{\triangle A}{A} + \frac{\triangle B}{B}$$

Systematic Errors Vs Random Errors

Systematic Errors

Systematic error is the one that deviates from the true value of measurement by a fixed amount.

Random error is the one that varies and which is likely to be positive or negative.

It remains constant or changes in a regular fashion in repeated measurements of the same quantity.

It is inconsistent and does not repeat in the same magnitude or direction except by chance.

Caused by some flaw in the experimental apparatus or a flawed experimental design.

Caused by unpredictable variations in the readings of a measurement device.

It can be eliminated using proper technique, calibrating equipment and employing standards.

It can be reduced by taking average of a large number of observations.