Waves

- * A traveling disturbance that carries energy through matter and space.
- * Waves transfer energy without transferring matter.
- * Waves are produced by something that vibrates.

Electromagnetic Wave

Waves propagating in form of oscillating electric and magnetic fields. Do not require medium for propagation.

Matter Wave

Waves associative with microscopic particles such as electrons, protons etc, in motion.

Mechanical Wave

Waves which require a material medium for their propagation are called mechanical waves.

Transverse Wave

The individual particles of the medium oscillate perpendicular to the direction of wave propogation.

- * In solids, $v = \sqrt{\frac{\eta}{\rho}}$ where η is modulus of rigidity and ρ is density of solids.
- * In stretched string, $v = \sqrt{\frac{T}{m}}$ here, T is tension in string and m is mass per unit length of string.

Progressive Wave

- * Displacement, y = A $\sin(\omega t kx + \phi_0)$ y = A $\sin 2\pi (\frac{t}{T} - \frac{x}{\lambda})$ = A $\sin \frac{2\pi}{\lambda}$ (vt-x)
- * Phase, $\phi = 2\pi (\frac{t}{T} \frac{x}{\lambda}) + \phi_0$ where ϕ_0 is the initial phase.
- * Phase change:

Longitudinal Wave

The individual particles of the medium oscillate along the direction of wave propagation.

Longitudinal waves

* In a solid of bulk modulus K, modulus of rigidity η and density ρ is

$$v = \sqrt{\frac{K + \frac{4}{3} \eta}{\rho}}$$

* In a fluid of bulk modulus K and density ρ is

$$v = \sqrt{\frac{k}{L}}$$

* Newton's formula for the velocity of sound in a gas is

$$v = \sqrt{\frac{K_{iso}}{\rho}} = \sqrt{\frac{P}{\rho}}$$
 (P = pressure of the gas)